OBJECT EVENT SIMULATION (OES)
A New DES Paradigm with a Formal Semantics
GERD WAGNER

BRANDENBURG UNIVERSITY OF
TECHNOLOGY

GERMANY

This SIMULTECH 2020 presentation is available
from

https://dpmn.info/reading
/SIMULTECH2020.

OVERVIEW

¢ Prolog: Conceptual Confusion in Discrete Event
Simulation (DES)

Part I: Discrete Dynamic Systems

Part II: Information Modeling with UML Class
Diagrams

Part III: Process Modeling with Extended Event
Graphs

Part IV: Simulation with OESjs

PROLOG

CONCEPTUAL CONFUSION
IN DES

AREYOU ALSO CONFUSED ABOUT...

e What is Discrete Event Simulation (DES)?

e What is an Activity?

e What is a Process?

e What is Process-Oriented Simulation?

e What is Process-Interaction Simulation?

e What is an agent, as opposed to an object? What
is Agent-Based Simulation?

e Where are the objects, and why is there no OO
Modeling, in DES?

e Why is there no standard modeling language in
DES, except Event Graphs (Schruben 1983)?

e Why are Event Graphs hardly used?

SOME OBSERVATIONS

e There is a lot of conceptual confusion in DES.

e DES textbooks avoid defining DES.

e Event-Based Simulation, as defined by Event
Graphs, is the foundation of DES.

e All other DES languages/frameworks should
extend Event-Based Simulation.

e Activities, as an important high-level modeling
concept, should be defined on top of events.

e "Process-Oriented" Simulation is, in fact, about
Queuing/Processing Networks.

¢ Processing Network models ("entities flowing
through a system") are a special class of DES
models.

MODELING LANGUAGE USAGE

Modeling Language

Petri Nets (1939)

Event Graphs (1983)

UML Activity Diagrams (1997)

BPMN (2004)

UML Class Diagrams (1997)

CONCEPTUAL CONFUSION

Finite Sta Event Gr

DEV

achines,

Futu

Activities
Queuing/Processing Networks
Process-Oriented Simulation

= Process-Interaction Simulation?
GPSS (1961), SIMAN/Arena,
ProModel, ExtendSim,
Simio, AnylLogic, ...

Event-Based

Event Scheduling Activity

SIMSCRIPT (1962)

Simulation

aphs (Schruben 1983)

Petri

e Diagrams
re Eve

?

nts List

?

? Process-Interaction
Simulation

with Co-Routines
Simula (1966),
D> SimPy, ...

‘ Agent-Based Simulation

Individual-Based Simulati
Micro-Simulation

’

Objects, Events, Activities

OESjs, OESpy, ...

Object Event Simulation

SIMSCRIPT (1962)

Event-Based Simulation Process
Event Graphs (Schruben 1983) Si

Event $cheduling
Future [Events List

Activities

. Age ased
on)
on
GPSS (1961),
SIMAN/Arena,

ProModel,
ExtendSim, Simio,

PART1
DISCRETE DYNAMIC SYSTEMS

WHAT IS A DISCRETE DYNAMIC SYSTEM
(DDS)?

A real world system consisting of objects and a
discrete flow of events such that at any moment in
time, the system's past is a sequence of situations
each characterized by

1. a time point f (the situation time)

2. the system state at t (as a combination of the
states of all objects of the system), and

3. a set of imminent events, to occur at times
greater than t.

and each situation S;,; is created from S; via

causal regularities triggered through the events
occuring at t.

CAUSAL REGULARTTTES

An event e@t causes:

1. state changes A of affected objects, and
2. follow-up events e;@t,, e,@t,,...

according to the dispositions of affected objects,
which can be generalized as causal regularities
of the form

t, 0, e@t — A, {e;@t;, es@to,...} with t; > t

with O being the set of the system's object states at
time t, such that

O'=Upd(0O, A)
is the resulting changed system state.

MODELING A DDS

Computationally, a DDS can be represented by an
Object Event Model (OEM) consisting of:

1. object types OT, e.g., in the form of classes of
an object-oriented language;

2. event types ET, e.g., in the form of classes of an
object-oriented language;

3. event rules R representing causal regularities,

e.g., in the form of onEvent methods of the class
that implements the triggering event type.

While OT and ET can be defined by a UML Class
Diagram, the set of event rules R can be defined by
an Extended Event Graph (or a basic DPMN
Process Diagram).

EXAMPLE: AMANUFACTURING
WORKSTATION

e Event rule 1:
When a new
part
arrives at
the
workstation | m— |
it is added to D D D
its input
buffer, and if the workstation is available,
processing starts.

e Event rule 2: When processing starts, the
next part is fetched from the input buffer and is
being processed until processing ends.

e Event rule 3: When processing ends, the
processed part is removed, and, if the input

buffer is not empty, the workstation fetches the
next part and starts processing it.

Potentially relevant object types: parts,
workstations.

Potentially relevant event types: part arrivals,
processing starts, processing ends, part departures.

CONCEPTUAL INFORMATION MODEL

* 0.1

«object type» «object type»
parts workstations
waiting parts

«event type»
part arrivals

«event type»
processing starts

«event type»
processing ends

«event type»
part departures

CONCEPTUAL PROCESS MODEL

; et part from
input | ___8&tpartirom . >

buffer workstation

4
processing ,*

add part to : start e

WS available
<>

part arrival proce%sing part departure

en

input buffer
not empty

PARTII

INFORMATION MODELING WITH
UML CLASS DIAGRAMS

DEFINING OBJECT AND EVENT TYPES

«object type»
WorkStation

inputBufferLength : Integer
status : WorkstationStatusEL

[J
1
«enumeration»
«exogenous event type» * | WorkstationStatusEL
PartArrival || AVAILABLE
BUSY
«rv» recurrence() : Decimal {Tri(3,4,8)}

«event type» *
ProcessingStart

«rv» processingTime() : Decimal {Exp(1/6)}

«event type»
ProcessingEnd

PART III

PROCESS MODELING
WITH

EXTENDED EVENT GRAPHS

EVENT GRAPHS

Event Graphs (EGs) have been proposed for DES
modeling by Schruben in 1983.

Strengths:

e EGs provide an intuitive visual modeling
language.

¢ EGs capture the fundamental event scheduling
paradigm.

Weaknesses:

1. EGs lack a visual notation for (conditional and
parallel) branching.

2. EGs do not support OO state structure modeling
(with objects/classes and attributes).

3. EGs do not allow combining events and
activities.

A NT GRA ODEL

AL A2AA N A4V A 4L VA JANL AL 4L 4 AV

(B = false) processingTime()

PartArrival ProcessingStart ProcessingEnd
{L++} {B:=true} {L--; IF L=0 THEN B:=false}

The integer variable L denotes the length of the
input buffer.

The Boolean variable B denotes the busy/available
status of the machine.

DPMN

...1s the Discrete Event Process Modeling Notation,
which extends Event Graphs by adding:

1. Exclusive/Inclusive/Parallel Gateways for
conditional /parallel branching

2. Data Objects for replacing "state variables"
(like L) with attributes (like
WorkStation: :inputBufferLength)

A DPMN Process Model is composed of Event
Rule Models.

AN EVENT RULE MODEL FOR
PartArrival EVENT

THE

A A

ws: WorkStation
[ws =a. WorkStatlon]

INCREMENT

inputBufferLength

[ws.status = AVAILABLE]

Qé--)

a:PartArrival

*
.
L d
*

workStation = ws

Processing
Start

ws: WorkStation
[ws = ps.workStation]

/N
: +ProcessingStart.
processingTime()
P,
ps:Processing — ProcessingEnd
Start workStation = 8

ps.workStation

AN EVENT RULE MODEL FOR

ws: WorkStation
[ws = pe.workStation]

DECREMENT inputBufferLength
IF inputBufferLength =0
THEN status := AVAILABLE

(50 [ws.inputBufferLength > 0]»@

*

pe:ProcessingEnd . ps:Processing
Start

Sk

workStation = ws

A DPMN MODEL OF
THE WORKSTATION PROCESS

ws: WorkStation

ws: WorkStation [ws = pe.workStation]

[ws = a.workStationp | [B e
TTNEREMENT DECREMENT inputBufferLength
in {JNtEciLT]E"XIrEL';‘r: th IF inputBufferLength = 0

P g THEN status := AVAILABLE
n =
E ps:Processing *
: Start +ProcessingStart. %
[ws.status = AVAILABLE] processingTime()
’x rad pe:ProcessingEnd
a:PartArrival ‘ . oA =
i R workStation =
|ZOrkStatlon WS o ps.workStation
L —
ws: WorkStation .-*" [ws.inputBufferLength > 0]
[ws = ps.workStation] .0

S Emation s

PART IV
SIMULATION WITH OESjs

AN OESjs MODEL OF THE WORKSTATION
PROCESS

... consists of

¢ an object type definition: Workstation
¢ three event type definitions:
PartArrival, ProcessingStart and

ProcessingEnd

It can be run as an online simulation at
https://simgedu.com/sims/102.

Workstation.js

var WorkStation = new cLASS ({
Name: "WorkStation",
supertypeName: "oBJECT",
properties: {
"inputBufferlLength": {range: "NonNegativeInteger",
label: "Input buffer length"},
"status": {range: WorkstationStatusEL, label: "Status"}

PartArrival js

var PartArrival = new cLASS ({
Name: "PartArrival",
supertypeName: "eVENT",
properties: {

"workStation": {range: "WorkStation", label:"Workstation"}
by
methods: {
"onEvent": function () {
var events=[], ws = this.workStation;

// add part to buffer

ws.inputBufferLength++;

// update statistics

sim.stat.arrivedParts++;

// if the work station is available

if (ws.status === WorkstationStatusEL.AVAILABLE) {
// schedule the part's processing start event
events.push(new ProcessingStart ({ workStation: ws}));

}

return events;

CONCLUSION AND OUTLOOK

e OES is a new DES paradigm with a formal
semantics and an ontological foundation.

e The preferred modeling languages for OES are
UML Class Diagrams and DPMN Process
Diagrams.

¢ OES has been implemented in JavaScript, a
Python implementation will follow.

e Basic OES can be extended by adding Activities,
Processing Networks, Agents, etc.

SEE ALSO

e Gerd Wagner: An Abstract State Machine
Semantics For Discrete Event Simulation,
Proc. of the 2017 Winter Simulation Conference.

¢ Gerd Wagner: Information and Process
Modeling for Simulation — Part I: Objects
and Events. Journal of Simulation
Engineering 1:1, 2018.

e Gerd Wagner: Information and Process
Modeling for Simulation — Part II:
Activities and Processing Networks. 2019.

e Available on dpmn.info

