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PROLOG

CONCEPTUAL CONFUSION
IN DES



AREYOU ALSO CONFUSED ABOUT...

e What is Discrete Event Simulation (DES)?

e What is an Activity?

e What is a Process?

e What is Process-Oriented Simulation?

e What is Process-Interaction Simulation?

e What is an agent, as opposed to an object? What
is Agent-Based Simulation?

e Where are the objects, and why is there no OO
Modeling, in DES?

e Why is there no standard modeling language in
DES, except Event Graphs (Schruben 1983)?

e Why are Event Graphs hardly used?



SOME OBSERVATIONS

e There is a lot of conceptual confusion in DES.

e DES textbooks avoid defining DES.

e Event-Based Simulation, as defined by Event
Graphs, is the foundation of DES.

e All other DES languages/frameworks should
extend Event-Based Simulation.

e Activities, as an important high-level modeling
concept, should be defined on top of events.

e "Process-Oriented" Simulation is, in fact, about
Queuing/Processing Networks.

¢ Processing Network models ("entities flowing
through a system") are a special class of DES
models.



MODELING LANGUAGE USAGE

Modeling Language

Petri Nets (1939)

Event Graphs (1983)

UML Activity Diagrams (1997)

BPMN (2004)

UML Class Diagrams (1997)
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PART1
DISCRETE DYNAMIC SYSTEMS



WHAT IS A DISCRETE DYNAMIC SYSTEM
(DDS)?

A real world system consisting of objects and a
discrete flow of events such that at any moment in
time, the system's past is a sequence of situations
each characterized by

1. a time point f (the situation time)

2. the system state at t (as a combination of the
states of all objects of the system), and

3. a set of imminent events, to occur at times
greater than t.

and each situation S;,; is created from S; via

causal regularities triggered through the events
occuring at t.



CAUSAL REGULARTTTES

An event e@t causes:

1. state changes A of affected objects, and
2. follow-up events e;@t,, e,@t,,...

according to the dispositions of affected objects,
which can be generalized as causal regularities
of the form

t, 0, e@t — A, {e;@t;, es@to,...} with t; > t

with O being the set of the system's object states at
time t, such that

O'=Upd( 0O, A)
is the resulting changed system state.



MODELING A DDS

Computationally, a DDS can be represented by an
Object Event Model (OEM) consisting of:

1. object types OT, e.g., in the form of classes of
an object-oriented language;

2. event types ET, e.g., in the form of classes of an
object-oriented language;

3. event rules R representing causal regularities,

e.g., in the form of onEvent methods of the class
that implements the triggering event type.

While OT and ET can be defined by a UML Class
Diagram, the set of event rules R can be defined by
an Extended Event Graph (or a basic DPMN
Process Diagram).



EXAMPLE: AMANUFACTURING
WORKSTATION

e Event rule 1:
When a new
part
arrives at
the
workstation | m— |
it is added to D D D
its input
buffer, and if the workstation is available,
processing starts.

e Event rule 2: When processing starts, the
next part is fetched from the input buffer and is
being processed until processing ends.

e Event rule 3: When processing ends, the
processed part is removed, and, if the input

buffer is not empty, the workstation fetches the
next part and starts processing it.

Potentially relevant object types: parts,
workstations.

Potentially relevant event types: part arrivals,
processing starts, processing ends, part departures.



CONCEPTUAL INFORMATION MODEL
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«object type» «object type»
parts workstations
waiting parts
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part arrivals

«event type»
processing starts

«event type»
processing ends

«event type»
part departures




CONCEPTUAL PROCESS MODEL
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PARTII

INFORMATION MODELING WITH
UML CLASS DIAGRAMS



DEFINING OBJECT AND EVENT TYPES

«object type»
WorkStation

inputBufferLength : Integer
status : WorkstationStatusEL

[ J
1
«enumeration»
«exogenous event type» * | WorkstationStatusEL
PartArrival || AVAILABLE
BUSY
«rv» recurrence() : Decimal {Tri(3,4,8)}

«event type» *
ProcessingStart

«rv» processingTime() : Decimal {Exp(1/6)}

«event type»
ProcessingEnd




PART III

PROCESS MODELING
WITH

EXTENDED EVENT GRAPHS



EVENT GRAPHS

Event Graphs (EGs) have been proposed for DES
modeling by Schruben in 1983.

Strengths:

e EGs provide an intuitive visual modeling
language.

¢ EGs capture the fundamental event scheduling
paradigm.

Weaknesses:

1. EGs lack a visual notation for (conditional and
parallel) branching.

2. EGs do not support OO state structure modeling
(with objects/classes and attributes).

3. EGs do not allow combining events and
activities.



A NT GRA ODEL

AL A2AA N A4V A 4L VA JANL AL 4L 4 AV

(B = false) processingTime()

PartArrival ProcessingStart ProcessingEnd
{L++} {B:=true} {L--; IF L=0 THEN B:=false}

The integer variable L denotes the length of the
input buffer.

The Boolean variable B denotes the busy/available
status of the machine.



DPMN

...1s the Discrete Event Process Modeling Notation,
which extends Event Graphs by adding:

1. Exclusive/Inclusive/Parallel Gateways for
conditional /parallel branching

2. Data Objects for replacing "state variables"
(like L) with attributes (like
WorkStation: :inputBufferLength)

A DPMN Process Model is composed of Event
Rule Models.



AN EVENT RULE MODEL FOR
PartArrival EVENT

THE
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ws: WorkStation
[ws =a. WorkStatlon]

INCREMENT

inputBufferLength

[ws.status = AVAILABLE]

Qé--)

a:PartArrival

*
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*

workStation = ws

Processing
Start




ws: WorkStation
[ws = ps.workStation]

/N
: +ProcessingStart.
processingTime()
P,
ps:Processing — ProcessingEnd
Start workStation = 8

ps.workStation




AN EVENT RULE MODEL FOR

ws: WorkStation
[ws = pe.workStation]

DECREMENT inputBufferLength
IF inputBufferLength =0
THEN status := AVAILABLE

(50 [ws.inputBufferLength > 0]»@

*

pe:ProcessingEnd . ps:Processing
Start

Sk

workStation = ws




A DPMN MODEL OF
THE WORKSTATION PROCESS

ws: WorkStation

ws: WorkStation [ws = pe.workStation]

[ws = a.workStationp | [ B e
TTNEREMENT DECREMENT inputBufferLength
in {JNtEciLT]E"XIrEL';‘r: th IF inputBufferLength = 0

P g THEN status := AVAILABLE
n =
E ps:Processing *
: Start +ProcessingStart. %
[ws.status = AVAILABLE] processingTime()
’x rad pe:ProcessingEnd
a:PartArrival ‘ . oA =
i R workStation =
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L —
ws: WorkStation .-*" [ws.inputBufferLength > 0]
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PART IV
SIMULATION WITH OESjs



AN OESjs MODEL OF THE WORKSTATION
PROCESS

... consists of

¢ an object type definition: Workstation
¢ three event type definitions:
PartArrival, ProcessingStart and

ProcessingEnd

It can be run as an online simulation at
https://simgedu.com/sims/102.



Workstation.js

var WorkStation = new cLASS ({
Name: "WorkStation",
supertypeName: "oBJECT",
properties: {
"inputBufferlLength": {range: "NonNegativeInteger",
label: "Input buffer length"},
"status": {range: WorkstationStatusEL, label: "Status"}



PartArrival js

var PartArrival = new cLASS ({
Name: "PartArrival",
supertypeName: "eVENT",
properties: {

"workStation": {range: "WorkStation", label:"Workstation"}
by
methods: {
"onEvent": function () {
var events=[], ws = this.workStation;

// add part to buffer

ws.inputBufferLength++;

// update statistics

sim.stat.arrivedParts++;

// if the work station is available

if (ws.status === WorkstationStatusEL.AVAILABLE) {
// schedule the part's processing start event
events.push( new ProcessingStart ({ workStation: ws}));

}

return events;



CONCLUSION AND OUTLOOK

e OES is a new DES paradigm with a formal
semantics and an ontological foundation.

e The preferred modeling languages for OES are
UML Class Diagrams and DPMN Process
Diagrams.

¢ OES has been implemented in JavaScript, a
Python implementation will follow.

e Basic OES can be extended by adding Activities,
Processing Networks, Agents, etc.



SEE ALSO

e Gerd Wagner: An Abstract State Machine
Semantics For Discrete Event Simulation,
Proc. of the 2017 Winter Simulation Conference.

¢ Gerd Wagner: Information and Process
Modeling for Simulation — Part I: Objects
and Events. Journal of Simulation
Engineering 1:1, 2018.

e Gerd Wagner: Information and Process
Modeling for Simulation — Part II:
Activities and Processing Networks. 2019.

e Available on dpmn.info



