Credibility, validity and testing of Dynamic Simulation Models

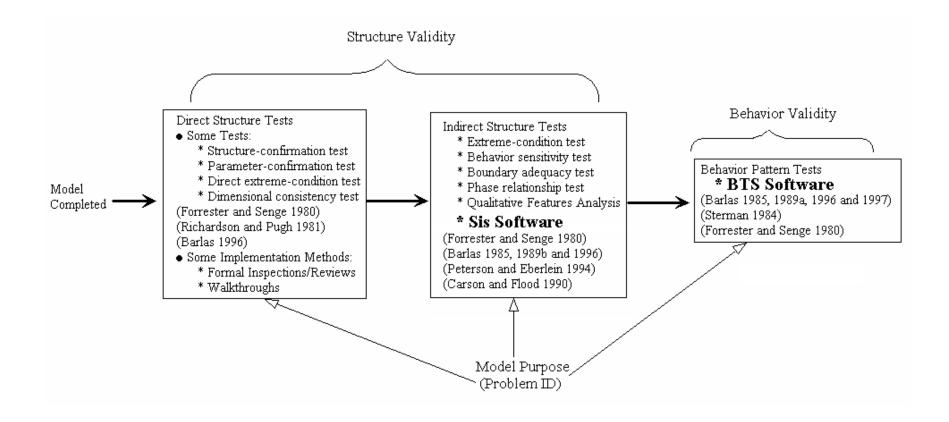
Yaman Barlas Boğaziçi University Industrial Engineering Department 34342 Bebek Istanbul, Turkey <u>ybarlas@boun.edu.tr</u>

http://www.ie.boun.edu.tr/?q=faculty/yaman-barlas SESDYN Group: <u>http://www.ie.boun.edu.tr/labs/sesdyn/</u>

Conceptual and Philosophical Foundations

- Model Credibility as Related to Two Main Types of Models
 - Statistical Forecasting models (black box)
 Purpose: Assisting decisions by providing forecasts
 Nature: Short term (a few) point forecasts
 Procedure: Curve fitting to given data (Regression, time series anaysis, most econometric models...)
 Scope: Typically one dependent and many independent variables
 Essence of credibility: statistical fit of model output to real data
 - Descriptive/Causal Policy models (transparent)
 Purpose: Assist in policy evaluation, improvement and design
 Nature: Long term trajectory (dynamic behavior) forecasts
 Pocedure: Causal-desriptive modeling of real processes (Models in sciences, simulation, system dynamics, some economic models...)
 Scope: Typically many inter-dependent variables and a few independents
 - Essence of credibility: Adequacy of relations in the model ('structure')

Philosophical Concepts and Issues (For Causal-Descriptive Models)


- Philosophy of Science (verification*, falsification, and...)
- Logical Empiricism and Absolute Truth
- Verification/falsification as a 'true-false' outcome
- Conversational justification & relative truth
- Validity (credibility) as 'adequacy', 'sufficiency', 'usefulness...
- Theory testing as a prolonged, gradual process
- Theory Justification as a social process
- 'Purpose' and credibility; all stakeholders...
- Role of statistical significance testing

*Terminology confusion/reversal: validation-verification

Two aspects of model credibility (For Causal-Descriptive Models)

- Structure Credibility
 - Primary role
 ('Explanation' in Philosophy of science)
 (Validation/evaluation in descriptive modeling fields)
- Behavior (output/predictive) Credibility
 - The 'problem of induction' in Philosophy of Science
 - Role in causal-descriptive modeling fields
 - ('right behavior for the right reasons')
 - Ex ante versus ex post prediction

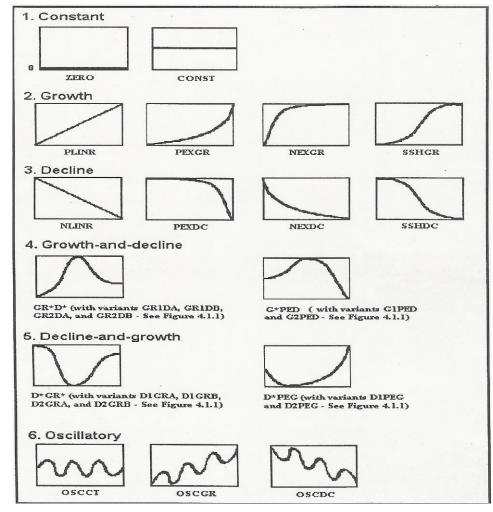
Overall Nature and Selected Tests of Dynamic Model Testing (Evaluation)

Structure Credibility Testing

- (Verification)
- Direct Structure Tests
 - Direct comparison of model structures with real ones
 - Crucial, yet highly qualitative and informal
 - Distributed through the entire modeling methodology
- Indirect Structure Tests (Structure-oriented behavior)
 - Extreme condition and other 'special' test simulations
 - Crucial, and also partly quantitative and formal

Validity (Quality) 'Built-in' vs. 'Tested' (Inspected)

- Problem ID and purpose
- Resolution, aggregation, time unit and horizon
- Verification (consistency) tests first. (Does the simulation model accurately represent my conceptual model? Does it do what I intend to do?)
- All variables & parameters with explainable meanings
- All equations with explainable meanings
- Units and unit consistency
- Established equations and structures (in literature) must be used
- Must start with a SMALL model (does NOT mean SIMPLE!)
- Embellish gradually, step by step, one structure at a time, by partial tests
- Models 'Large enough but not larger than necessary'! (parsimony)
- Good documentation crucial
- And try to end with a SMALL model! (A generic, presentation version of the full model –establishing credibility ultimately means convincing people)

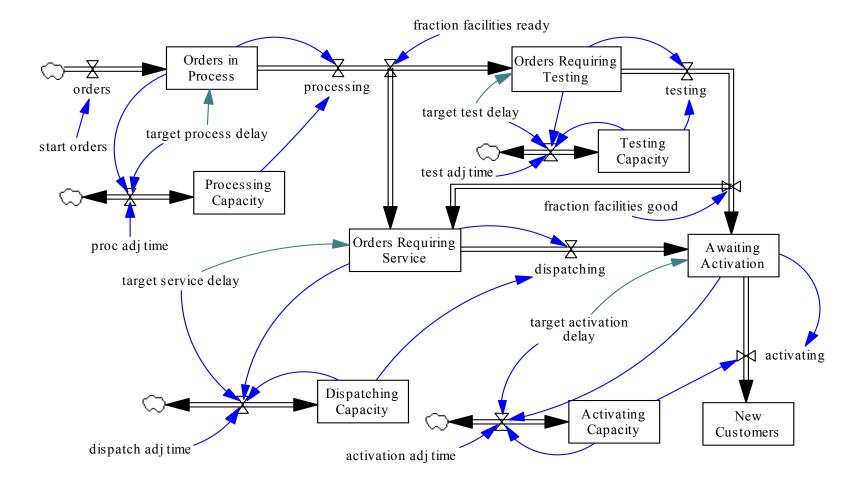

Indirect Structure Testing Software: SiS

•Based on automated dynamic pattern recognition

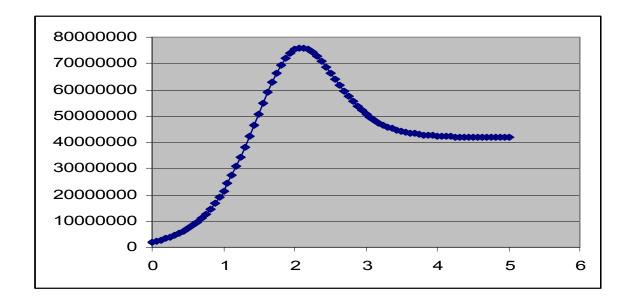
•Extreme condition pattern testing

•Also in parameter calibration and policy design

Indirect Structure Testing Software (SiS)


Basic Dynamic Patterns

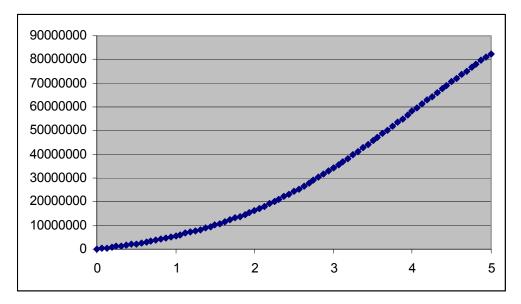
Indirect Structure Testing Software (SiS)


Abbreviation	Description						
ZERO	Zero						
CONST	Constant						
PLINR	Linear with positive slope						
NLINR	Linear with negative slope						
NEXGR	Negative exponential growth						
SSHGR	S-shaped growth						
PEXGR	Positive exponential growth						
GR1DA	Growth with decreasing rate followed by decline to equilibrium (growth level is lest than decline level)						
GRIDB	Growth with decreasing rate followed by decline to equilibrium (growth level is greater than decline level)						
GR2DA	S-shaped growth and decline to equilibrium (growth level is less than decline level)						
GR2DB	S-shaped exponential growth and decline to equilibrium (growth level is greater than decline level)						
DIPEG	Decline with increasing rate followed by positive exponential growth						
D2PEG	S-shaped decline followed by positive exponential decline						
NEXDC	Negative exponential decline						
SSHIDC	S-shaped decline						
PEXDC	Positive exponential decline						
DIGRA	Decline with increasing rate followed by growth to equilibrium (decline level is les, than growth level)						
DIGRB	Decline with decreasing rate followed by decline to equilibrium (growth level is les than decline level)						
D2GRA	S-shaped decline and growth to equilibrium (decline level is less than growth level)						
D2GRB	S-shaped decline and growth to equilibrium (decline level is greater than growth level)						
GIPED	Decline with decreasing rate followed by positive exponential decline						
G2PED	S-shaped growth followed by positive exponential decline						
OSCCT	Oscillation around constant mean						
OSCGR	Oscillation around linearly growing trend						
OSCDC	Oscillation around linearly declining trend						

List of dynamic behavior pattern classes

Sample Model Used with SiS

Validity Testing with Default Parameters

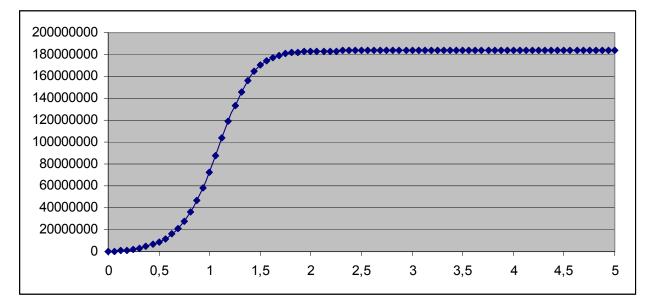


Simulation Output (with default base parameters)

-8,20289 -21,6809
-21 6809
81,0000
-21,6809
-10

Likelihood Values of simulation behavior correctly classified as the GR2DB pattern

Parameter Calibration with Specified Pattern



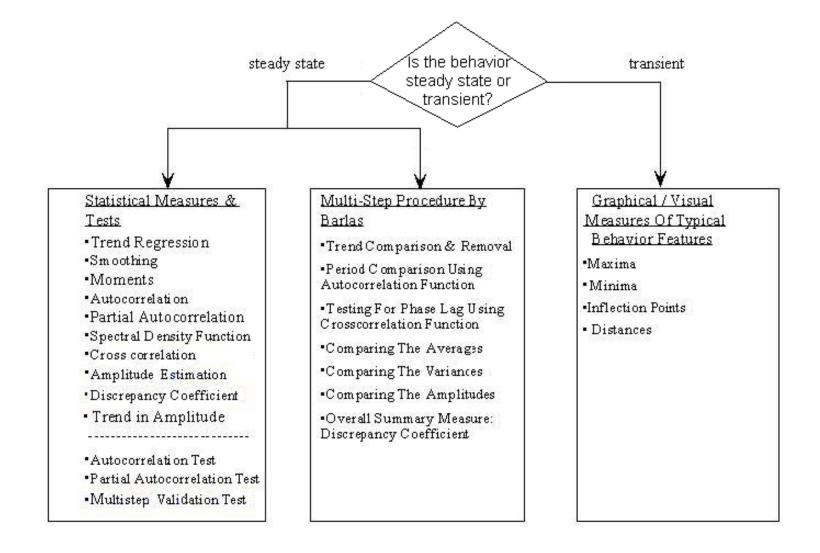
Simulation Output (with base parameters)

			Number of Values In the
Selected Parameters	Min	Max	Interval
1. advertising effectiveness	0	1	5
2. customer sales effectiveness	0	8	5
3. sales size	1	5	5

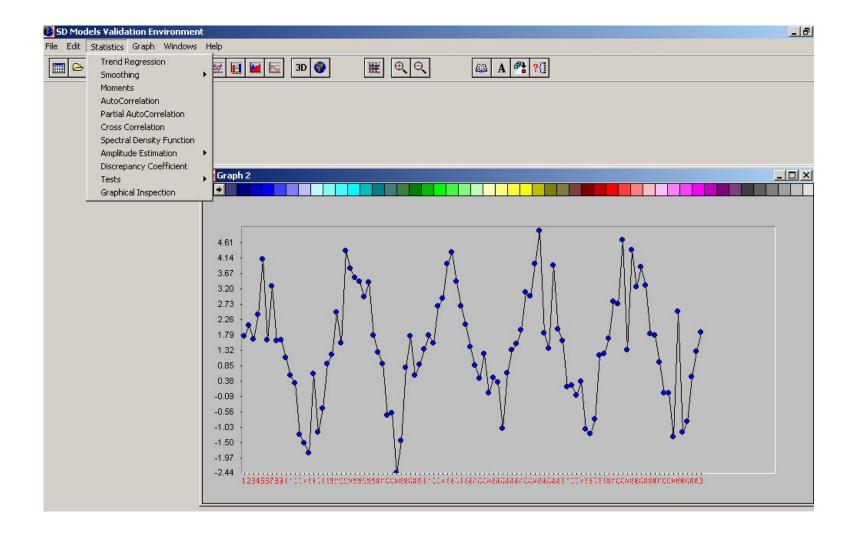
The ranges and number of values tried for each parameter

Result of the Parameter Calibration

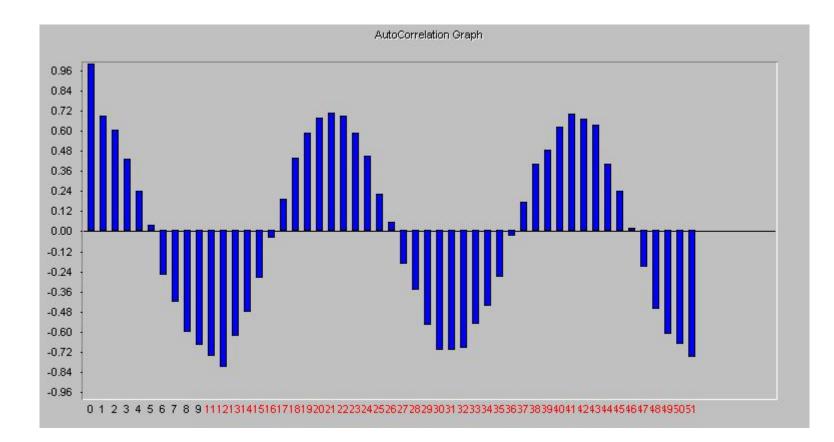
Simulation Output as Desired (after automated parameter calibration)

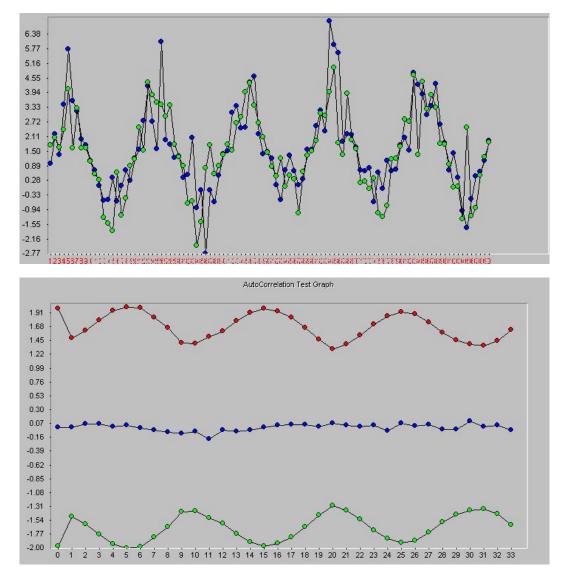

► Best parameter set is 41

- Best Likelihood Result: 1.2119776136254248 Best Parameter Set:
- >1. advertising effectiveness: 0.25
- \geq 2. customer sales effectiveness: 6.0
- >3. sales size: 1.0

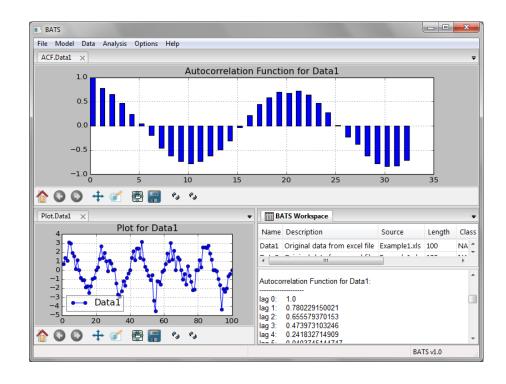

Output Behavior Credibility

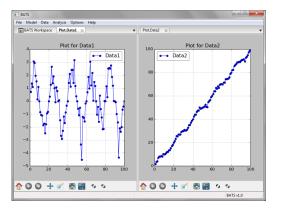
- Two types of patterns
 - Steady state
 - Transient
- Major pattern components
 - Trend, periods, amplitudes, ...

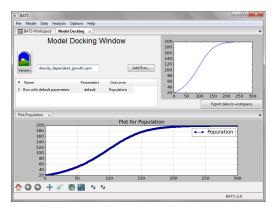

Behavior Credibility Testing Software: BTS II


Behavior Validity Testing Software: BTS II

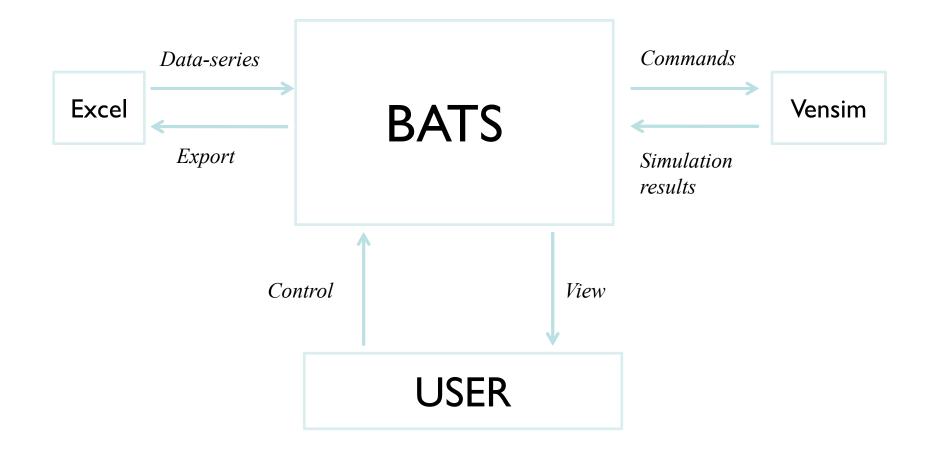
BTS II Tools Autocorrelation



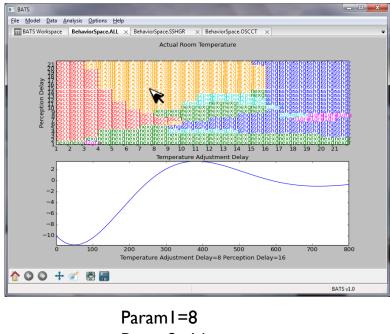

BTS II Tools Autocorrelation Test



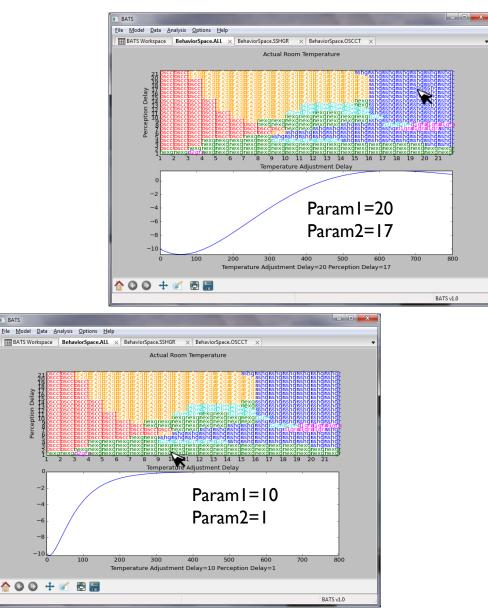
BATS (Behavior Analysis and Testing Software)


Combines BTS and SiS in single platform

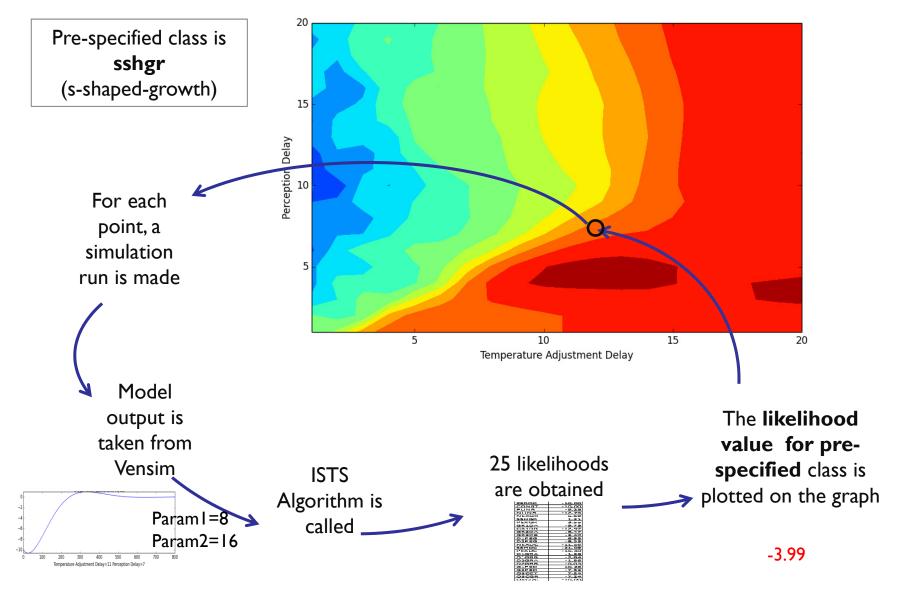
BATS Interfaces



Overview of Features of BATS


Data Importing		a Visualization			
Load From File		Plot			
Model Docking Window		Model Analysis			
Draw		a Analysis	*	Hypothesis Tester	
	Classify Trend		*	Behavior Space Classifier	
			*	Pabayian Class Mappan	
Data Preparation Split		Autocorrelation		Behavior Class Mapper	
		Autocorrelation Test			
Select		Spectral Density			
Exponential Smoothing		Amplitude Estimation			
Moving Average		Crosscorrelation			
< Trend >		Summary Stats			
	*	Graphical Comparisor	۱		

BATS Behavior Space Classifier


(The plot is dynamic)

Param2=16

BATS Behavior Class Mapper

Usage Modes of BATS

- Structure-oriented behavior validity testing
 - Extreme condition tests
- Behavior pattern validity testing
 - Barlas' Multi-Step procedure and Graphical Inspection
- Sensitivity analysis
 - Behavior pattern sensitivity with respect to parameter changes
- Model calibration
 - Parameter calibration based on behavior patterns
- Policy design
 - Policy parameter specification based on behavior patterns
- Policy analysis
 - Policy structure specification based on pattern characteristics of model behaviors

Practical Implementation Issues

- More standardized and automated tools
- User friendliness
- Better integration with simulation software
- More standardized validation procedures
- 'Credibility of Implementation'

(A justified model means just a reliable laboratory; 'implementation validity' does *not* automatically follow at all. It should be taken as project in itself)

Concluding Observations

- Model credibility as a process, rather than an outcome
- Continuous (prolonged) credibility testing
- Model testing, analysis and policy design all integrated
- Credibility of Policy Recommendations (Robustness, timing, duration, transition...)
- From validity towards quality
- Quality 'built-in versus inspected-in'
- Group model building
- Testing by interactive gaming (stakeholders)

References

- Akkermans, H.A., and J.A.M. Vennix. 1997. "Clients' opinions on group model-building: an exploratory study." System Dynamics Review 13(1): 3-31
- Andersen, D.F. 1980. "How Differences in Analytic Paradigms Can Lead to Differences in Policy Decisions." In *Elements of the System Dynamics Method*, ed. J. Randers. Portland, OR: Productivity Press
- Andersen, D.F., G.P. Richardson and J.A.M. Vennix. 1997. "Group model building: adding more science to the craft." System Dynamics Review. 13(2): 187-201
- Ansoff, H.I and D.P. Slevin. 1968. "An Appreciation of Industrial Dynamics." *Management Science* 14: 383-397.
- Balci O. 1994. Validation, verification and testing techniques throughout the life cycle of a simulation study. *Annals of Operations Research* 53: 121–173.
- Balci O, Sargent RG. 1984. A bibliography on the credibility assessment and validation of simulation and mathematical models. *Simuletter* 15: 15–27
- Barlas Y, Suat Boğ. 2005. Automated dynamic pattern testing, parameter calibration and policy improvement. *Proceedings of international system dynamics conference*. (CD). Albany, NY, USA
- Barlas Y. 2002. "System Dynamics: Systemic Feedback Modeling for Policy Analysis" in <u>Knowledge for</u> <u>Sustainable Development - An Insight into the Encyclopedia of Life Support Systems</u> Vol.1, UNESCO-Eolss Publishers, Paris, France, Oxford, UK. pp.1131-1175.
- Barlas, Y. 1996. "Formal Aspects of Model Validity and Validation in System Dynamics", <u>System Dynamics</u> <u>Review</u>, Vol.12, no.3, pp. 183-210.
- Barlas, Y. 1992. Comments on "On the Very Idea of a System Dynamics Model of Kuhnian Science." *System Dynamics Review* 8(1): 43-47.
- Barlas, Y. 1990. "An Autocorrelation Function Test For Output Validation." Simulation 55(1):7-16.
- Barlas, Y. and S. Carpenter. 1990. "Philosophical Roots of Model Validation: Two Paradigms." *System Dynamics Review* 6(2):148-166.
- Barlas, Y. 1989a. "Multiple Tests for Validation of System Dynamics Type of Simulation Models." *European Journal of Operational Research* 42(1):59-87.
- Barlas, Y. 1989b. "Tests of Model Behavior That Can Detect Structural Flaws: Demonstration With Simulation Experiments." In *Computer-Based Management of Complex Systems: International System Dynamics Conference*. P.M.Milling and E.O.K.Zahn, eds. Berlin: Springer-Verlag.

- Bell, J.A and M.F. Bell. 1980. "System Dynamics and Scientific Method." In *Elements of the System Dynamics Method*, ed. J. Randers. Portland, OR: Productivity Press
- Carson, E.R.and R.L.Flood. 1990. "Model Validation: Philosophy, Methodology and Examples." *Trans Inst MC*.12(4): 178-185.
- Coyle, G. And D. Exelby. 2000. "The validation of commercial system dynamics models." System Dynamics Review 16(1): 27-41
- European Journal of Operational Research. 1993. Special Issue on Model Validation. 66(2).
- Forrester J.W. and P.M.Senge. 1980. "Tests For Building Confidence in System Dynamics Models." In *System Dynamics*. Legasto, A.A., J.W. Forrester and J.M. Lyneis, eds. Amsterdam: North-Holland
- Forrester, J.W., G.W. Low and N.J. Mass.1974. "The Debate on World Dynamics: A Response to Nordhaus." *Policy Sciences* 5: 169-190.
- Forrester, J.W. 1973. Confidence in Models of Social Behavior with Emphasis on System Dynamics Models. *System Dynamics Group Working Paper.* Sloan School of Management, MIT, Cambridge, MA.
- Forrester, J.W. 1968. "A Response to Ansoff and Slevin." *Management Science* 14: 601-618.
- Forrester, J.W. 1961. Industrial Dynamics. Portland, OR: Productivity Press
- Graham, A.K., J.D.W. Morecroft, P.M. Senge and J.D. Sterman. 1994. "Model-supported Case Studies in Management Education." In *Modeling For Learning Organizations*. Morecroft, J.D.W and J.D. Sterman, eds. Portland, OR: Productivity Press
- Kanar K and Y. Barlas. 1999. "A Dynamic Pattern-oriented Test for Model Validation", <u>Proceedings of 4th Systems</u> Science European Congress, Valencia, Spain, Sept. 1999, pp. 269-286
- Kleijnen, J.P.C. 1995. "Verification and Validation of Simulation Models." *European Journal of Operational Research* 82: 145-162.
- Lane, D.C. 1995. "The Folding Star: A Comparative Reframing and Extension of Validity Concepts in System Dynamics." In *Proceedings of International System Dynamics Conference* (Tokyo, Japan). Vol.1: 111-130.
- Lane, D.C. 2001. "Rerum cognoscere causas: Part I How do the ideas of system dynamics relate to traditional social theories and the voluntarism/determinism debate?" System Dynamics Review 17(2): 97-118
- Lane, D.C. 2001. "Rerum cognoscere causas: Part II Opportunities generated by the agency/structure debate and suggestions for clarifying the social theoretic position of system dynamics." System Dynamics Review 17(4): 293-309

- Mass, N. and P.M. Senge. 1980. "Alternative Tests for Selecting Model Variables." In *Elements of the System Dynamics Method*, ed. J. Randers. Portland, OR: Productivity Press
- Meadows, D. 1989. "Gaming to Implement System Dynamics Models." In Computer-Based Management of Complex Systems: International System Dynamics Conference. P.M.Milling and E.O.K.Zahn, eds. Berlin: Springer-Verlag.
- Meadows, D. H. 1980. "The Unavoidable A Priori." In *Elements of the System Dynamics Method*, ed. J. Randers. Portland, OR: Productivity Press
- Miller, R.G. 1981. Simultaneous Statistical Inference. New York, N.Y: Springer-Verlag
- Mitroff, I. 1969. "Fundamental Issues in the Simulation of Human Behavior." *Management Science*. 15: 635-649.
- Morecroft, J.D.W. and J.D. Sterman, eds. 1994. *Modeling For Learning Organizations*. Portland, OR: Productivity Press
- Morrison, D.E. and R.E. Henkel, eds. 1970. *The Significance Test Controversy.* Chicago, IL: Aldine Press
- Nordhaus, W.D. 1973. "World Dynamics: Measurement Without Data." *Economic Journal* 83: 1156-1183.
- Naylor, T.H. and J.M. Finger. 1968. "Verification of Computer Simulation Models." *Management Science*. 14: 92-101.
- Oral, M. and O. Kettani. 1993. "The Facets of the Modeling and Validation Process in Operations Research." *European Journal of Operational Research* 66(2): 216-234.
- Ören, TI and L Yilmaz. 2013. <u>'Philosophical aspects of modeling and simulation' in Ontology</u>, Epistemology, and Teleology for Modeling and Simulation, Springer Berlin Heidelberg
- Ören, TI. 1981. <u>'Concepts and criteria to assess acceptability of simulation studies: a frame of reference'</u> *Communications of the ACM* 24 (4), 180-189
- Peterson, D.W. and R.L. Eberlein. 1994. "Reality Check: A Bridge Between Systems Thinking and System Dynamics." *System Dynamics Review* 10(2-3): 159-174
- Radzicki, M.J. 1992. Comments on "On the Very Idea of a System Dynamics Model of Kuhnian Science." *System Dynamics Review* 8(1): 49-53.
- Radzicki, M.J. 1990. "Methodologia Oeconomiae et Systematis Dynamis." *System Dynamics Review* 6(2): 123-147.
- Roberts, N., D. Andersen, R. Deal, M. Garet, W. Shaffer. 1983. *Introduction to Computer Simulation: A System Dynamics Approach*. Portland, OR: Productivity Press
- Rouwette, E.A.J.A., J.A.M. Vennix and T. Mullekom. 2002. "Group model building effectiveness: a review of assessment studies." System Dynamics Review 18(1): 5-45

- Saysel A.K and Y Barlas. "Model simplification and validation with indirect structure validity tests" *System Dynamics Review*, Vol. 22, No.3, 2006; 241-262.
- Sheng G , MS Elzas, TI Ören, BT Cronhjort. 1993. '<u>Model validation: a systemic and systematic approach</u>' *Reliability Engineering & System Safety*, 42(2), pp. 247-259
- Schruben, L.W. 1980. "Establishing the Credibility of Simulations." *Simulation.* 34(3): 101-105.
- Senge, P.M. 1977. Statistical Estimation of Feedback Models. Simulation. 28: 177-184.
- Schlesinger, S. et al. 1979. "Terminology for Model Credibility." *Simulation.* 32(3):103-104.
- Sterman, J.D. 1992. Comments on "On the Very Idea of a System Dynamics Model of Kuhnian Science." *System Dynamics Review* 8(1): 35-42.
- Sterman, J.D. 1987. "Testing Behavioral Simulation Models by Direct Experiment." *Management Science* 33(12): 1572-1592.
- Sterman, J.D. 1985. "The Growth of Knowledge: Testing a Theory of Scientific Revolutions with a Formal Model." *Technological Forecasting and Social Change* 28(2): 93-122.
- Sterman, J. D. 1984. Appropriate Summary Statistics for Evaluating the Historical Fit of System Dynamics Models. *Dynamica*. 10(2):51-66.
- Vennix, J.A.M. 1999. "Group model-building: tackling messy problems." System Dynamics Review. 15(4): 379-401
- Vennix, J.A.M., H.A. Akkermans and E.A.J.A. Rouwette. 1996. "Group model-building to facilitate organizational change: an exploratory study." System Dynamics Review. 12(1): 39-58
- Wittenberg, J. 1992. "On the Very Idea of a System Dynamics Model of Kuhnian Science." *System Dynamics Review* 8(1): 21-33.
- Wright, R.D. 1972. "Validating Dynamic Models: An Evaluation of Tests of Predictive Power." In *Proceedings of Summer Computer Simulation Conference*. 1286-96.
- Yücel, G. and Y. Barlas. 2011. Automated parameter specification in dynamic feedback models based on behavior pattern features. *System Dynamics Review*, Vol. 27, No.2, pp. 195-215.
- Zellner, A. 1980. Comment on Forrester's "Information Sources for Modeling the National Economy." *Journal of the American Statistical Association* 75: 567-569.