
The Role of Domain Specific
Languages in Modeling and
Simulation
Towards reproducible simulation studies

Adelinde Uhrmacher
University of Rostock
Institute of Computer Science

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 1 / 61

Simulation between theory and experiment

Simulations are considered a “new” mode
of science, between theory and (real)
experiment.

Winsberg (2010): Science in the age of computer simulation

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 2 / 61

Modeling and Simulation an Experimental Science

• “A model for a system S and an Experiment E is anything to which E can be
applied to answer questions about S”

• “A simulation is an experiment performed with a formal model and executed
on a computer”

Cellier F. (1991): Continuous Systems Modeling, Springer.

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 3 / 61

Any scientific experiment requires
reproducibility.

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 4 / 61

The credibility crisis of simulation

2002 “An opinion is spreading that one
cannot rely on the majority of the
published results on performance
evaluation studies of telecommunication
networks based on stochastic
simulation, since they lack credibility”

2014 “there is no significant change with
respect to quality and credibility of the
simulation studies revised and the deep
crisis of credibility still remains.”

Pawlikowski K. et al., (2002): Credibility of simulation studies of telecommunication networks.
Communications Magazine, IEEE.

Sarkar N. et al., (2014): Revisiting the issue of the credibility of simulation studies in
telecommunication networks: highlighting the results of a comprehensive survey of IEEE publications.
Communications Magazine, IEEE

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 5 / 61

Requirements for changing this

adequate information about

• the model

• conceptual and/or formal model

• experiments used for the model’s verification & validation

• experiments used to produce the results

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 6 / 61

Information about agent-based models

Agent-based approaches have become an established method in many areas, e.g., ecology
or sociology, however “agent-based models are often too poorly documented for being
evaluated”

Grimm V., et al. (2006): A standard protocol for describing individual-based and agent-based
models. Ecological Modelling 198:115-126.

http://css.gmu.edu/Cholera/Cholera/ODD.html

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 7 / 61

http://css.gmu.edu/Cholera/Cholera/ODD.html

The protocol ODD

ODD (=Overview, Design concepts, Detail) for
describing agent-based models

• Purpose

• Entities, state variables, and scales

• Process overview and scheduling

• Design concepts

• Initialization

• Input data

• Submodels

Grimm V., et al. (2006): A standard protocol for describing individual-based and agent-based
models. Ecological Modelling 198:115-126.

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 8 / 61

Limitations of ODD

• “ODD-based model descriptions . . . ; however, in most cases it will be necessary to
have a simulation experiments or model analysis section following the model
description”

• E.g., Process overview and scheduling: “Who (i.e., what entity) does what, and in what
order? . . . Except for very simple schedules, one should use pseudo-code to describe
the schedule in every detail, so that the model can be reimplemented ”

; languages needed with accessible syntax, pruned for the purpose at hand, and with a
clear semantics.

Grimm V., et al., (2010): The ODD protocol: a review and first update. Ecological Modelling 221:
2760-2768

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 9 / 61

Domain specific languages

• A domain-specific language (DSL) is a programming language that is tailored
specifically for an application domain.

• A DSL “offers, through appropriate notations and abstractions, expressive
power focused on, and usually restricted to, a particular problem domain.”

• internal DSLs – pro: minimal implementation effort, easily extendable, cons:
similarity with the host language

• external DSLs – pro: complete freedom of syntax, cons: own interpreter.

van Deursen A. et al. (2000): Domain-Specific Languages: An Annotated Bibliography. SIGPLAN
Notices 35(6): 26-36

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 10 / 61

Domain specific languages for
modeling and simulation.

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 11 / 61

DSLs for modeling

The syntax and semantics should reflect

• common metaphors of the domain, e.g., reaction-based for chemistry

• requirements of the domain, e.g., Continuous Time Markov Chain semantics
to adequately describe observed noise, variability and heterogeneity of the
system

• important characteristics, e.g., multi-level (up- and downward causations) or
dynamic structures

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 12 / 61

Typical requirements for domain specific modeling
languages

• compactness

• composibility

• ease of use

• sufficiently flexible (how much can be expressed?) and expressive (how easy can
things be expressed?)

• formally well grounded

“‘how to say it’ affects the expressiveness, succinctness, executability, and composability of
model descriptions as well as the complexity of computing with these descriptions. In other
words, syntax matters.”

http://www-tsb-workshop.imag.fr/abstract_henzinger.html

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 13 / 61

http://www-tsb-workshop.imag.fr/abstract_henzinger.html

Let’s be more concrete: a
modeling language for cell
biological systems.

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 14 / 61

As with any language – first of all
what would we like to describe?

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 15 / 61

Biological systems are hierarchically organized
Many small parts form a larger part of which many form a larger part . . .

Different ‘levels of organization’ with different interacting entities.

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 16 / 61

Causality between different levels
Reductionist thinking

Denis Noble (2006). The Music of Life. Oxford University Press.

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 17 / 61

Causality between different levels
Complex systems involve upward AND downward causation

Denis Noble (2006). The Music of Life. Oxford University Press.

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 17 / 61

Upward and downward causation

• Upward causation: parts of a system influence the system as a whole.
• Downward causation: the system as a whole influences its parts.

“All processes at the lower level of a hierarchy are restrained by and act in
conformity to the laws of the higher level.” 1

“The whole is to some degree constrained by the parts (upward causation), but at
the same time the parts are to some degree constrained by the whole (downward
causation).” 2

1Donald T. Campbell (1974). ‘Downward causation’ in hierarchically organised biological systems.
Studies in the philosophy of biology: Reduction and related problems, Macmillan Press, 179–186

2F. Heylighen (1995). Downward causation. Principia Cybernetica, http://pespmc1.vub.ac.be/DOWNCAUS.HTML

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 18 / 61

Upward and downward causation

• Upward causation: parts of a system influence the system as a whole.
• Downward causation: the system as a whole influences its parts.

“All processes at the lower level of a hierarchy are restrained by and act in
conformity to the laws of the higher level.” 1

“The whole is to some degree constrained by the parts (upward causation), but at
the same time the parts are to some degree constrained by the whole (downward
causation).” 2

1Donald T. Campbell (1974). ‘Downward causation’ in hierarchically organised biological systems.
Studies in the philosophy of biology: Reduction and related problems, Macmillan Press, 179–186

2F. Heylighen (1995). Downward causation. Principia Cybernetica, http://pespmc1.vub.ac.be/DOWNCAUS.HTML

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 18 / 61

Upward and downward causation

• Upward causation: parts of a system influence the system as a whole.
• Downward causation: the system as a whole influences its parts.

“All processes at the lower level of a hierarchy are restrained by and act in
conformity to the laws of the higher level.” 1

“The whole is to some degree constrained by the parts (upward causation), but at
the same time the parts are to some degree constrained by the whole (downward
causation).” 2

1Donald T. Campbell (1974). ‘Downward causation’ in hierarchically organised biological systems.
Studies in the philosophy of biology: Reduction and related problems, Macmillan Press, 179–186

2F. Heylighen (1995). Downward causation. Principia Cybernetica, http://pespmc1.vub.ac.be/DOWNCAUS.HTML

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 18 / 61

How would we like to describe it?

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 19 / 61

Modeling with classical approaches (e.g. ODEs)
• Structure (different levels) only implicitly

• Leads to many similar model parts (redundancy)
=> high model complexity

d [Acyt]
dt = kr [Bcyt]−kf [Acyt]

d [Anuc]
dt = kr [Bnuc]−kf [Anuc]

d [Bcyt]
dt = kf [Acyt]−kr [Bcyt]

d [Bnuc]
dt = kf [Anuc]−kr [Bnuc]

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 20 / 61

Biologists typically don’t like such things

Jeschke et al. (2011): Exploring the performance of spatial stochastic simulation algorithms. J.
Comput. Physics 230(7): 2562-2574 (2011)
July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 21 / 61

ML-Rules - An external DSL for Modeling

A rule-based language for multi-level modeling and simulation in cell biology1

• multi-level modeling

• dynamic nesting (variable structure models)

• stochastic semantics

1Carsten Maus et al. (2011): Rule-based multi-level modeling of cell biological systems. BMC
Systems Biology 5: 166

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 22 / 61

Rule-based modeling approach
• Molecule A with two modification sites

• Each site can be irreversibly and independently modified

Set of reactions

Auu -> Apu
Auu -> Aup
Apu -> App
Aup -> App

Rule-based approach: attributed species and reaction patterns
A(u,*) -> A(p,*)
A(*,u) -> A(*,p)

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 23 / 61

Rule-based modeling approach
• Molecule A with two modification sites

• Each site can be irreversibly and independently modified

Set of reactions
Auu -> Apu
Auu -> Aup

Apu -> App
Aup -> App

Rule-based approach: attributed species and reaction patterns
A(u,*) -> A(p,*)
A(*,u) -> A(*,p)

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 23 / 61

Rule-based modeling approach
• Molecule A with two modification sites

• Each site can be irreversibly and independently modified

Set of reactions
Auu -> Apu
Auu -> Aup
Apu -> App
Aup -> App

Rule-based approach: attributed species and reaction patterns
A(u,*) -> A(p,*)
A(*,u) -> A(*,p)

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 23 / 61

Rule-based modeling approach
• Molecule A with two modification sites

• Each site can be irreversibly and independently modified

Set of reactions
Auu -> Apu
Auu -> Aup
Apu -> App
Aup -> App

Rule-based approach: attributed species and reaction patterns
A(u,*) -> A(p,*)
A(*,u) -> A(*,p)

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 23 / 61

Effective reduction of combinatorial explosion

4 species
4 reactions

512 species
2304 reactions vs. 9 rules

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 24 / 61

Effective reduction of combinatorial explosion

4 species
4 reactions

512 species
2304 reactions vs. 9 rules

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 24 / 61

ML-Rules: nested species for modeling hierarchies

Example: A reacts to B and is enclosed by C
Implicit structure information: AC → BC

Explicit structure information: C [A]→ C [B]

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 25 / 61

ML-Rules: nested species for modeling hierarchies

Example: A reacts to B and is enclosed by C
Implicit structure information: AC → BC

Explicit structure information: C [A]→ C [B]

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 25 / 61

ML-Rules: nested species for modeling hierarchies

Example: A reacts to B and is enclosed by C
Implicit structure information: AC → BC

Explicit structure information: C [A]→ C [B]

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 25 / 61

Multi-compartment model revisited

d [Acyt]
dt = kr [Bcyt]−kf [Acyt]

d [Anuc]
dt = kr [Bnuc]−kf [Anuc]

d [Bcyt]
dt = kf [Acyt]−kr [Bcyt]

d [Bnuc]
dt = kf [Anuc]−kr [Bnuc]

ML-Rules: reducing complexity by applying rules to different solutions

Aa a·kf−−→ B
Bb b·kr−−→ A

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 26 / 61

Multi-compartment model revisited

d [Acyt]
dt = kr [Bcyt]−kf [Acyt]

d [Anuc]
dt = kr [Bnuc]−kf [Anuc]

d [Bcyt]
dt = kf [Acyt]−kr [Bcyt]

d [Bnuc]
dt = kf [Anuc]−kr [Bnuc]

ML-Rules: reducing complexity by applying rules to different solutions

Aa a·kf−−→ B
Bb b·kr−−→ A

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 26 / 61

Dynamic manipulation of model hierarchies

Example: endo- and exocytosis
Cell [] + Particle←→ Cell [Endosome[Particle]]

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 27 / 61

Dynamic manipulation of model hierarchies

Example: endo- and exocytosis
Cell [solution?] + Particle←→ Cell [Endosome[Particle] + solution?]

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 27 / 61

Dynamic manipulation of model hierarchies

Example: mitochondrion fusion
Mitochondrion[s1?] + Mitochondrion[s2?]→Mitochondrion[s1? + s2?]

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 28 / 61

Dynamic manipulation of model hierarchies

Example: mitochondrion fission
Mitochondrion[s?]→Mitochondrion[s1?] + Mitochondrion[s2?]

where (s1?,s2?) = split(s?,0.5)

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 29 / 61

Species attributes: own state at each level

Attributes allow to equip each level with own states and dynamics that are
constrained by their attributes.

E.g., the size of a cell may be described by an attribute of the Cell species.

Example: cell growth
Cell(volume)[sol?]→ Cell(volume + ∆V)[sol?]

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 30 / 61

So far a compact, succinct, flexible,
and expressive description of cell
biological systems, however what
about its formal semantics?

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 31 / 61

Modeling approaches

Some are focused on specific application domains, e.g., manufacturing, networks, or
cell biology,

; although easy to use, typically are not flexible and lack some formal grounding

Some are flexible and formally well grounded, e.g., DEVS or process algebras like the
π calculus

; typically are not easy to use (or/and do not lead to compact models)

Can’t we have our cake, and eat it too?

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 32 / 61

Modeling approaches

Some are focused on specific application domains, e.g., manufacturing, networks, or
cell biology,

; although easy to use, typically are not flexible and lack some formal grounding

Some are flexible and formally well grounded, e.g., DEVS or process algebras like the
π calculus

; typically are not easy to use (or/and do not lead to compact models)

Can’t we have our cake, and eat it too?

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 32 / 61

Modeling approaches

Some are focused on specific application domains, e.g., manufacturing, networks, or
cell biology,

; although easy to use, typically are not flexible and lack some formal grounding

Some are flexible and formally well grounded, e.g., DEVS or process algebras like the
π calculus

; typically are not easy to use (or/and do not lead to compact models)

Can’t we have our cake, and eat it too?

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 32 / 61

Modeling approaches

Some are focused on specific application domains, e.g., manufacturing, networks, or
cell biology,

; although easy to use, typically are not flexible and lack some formal grounding

Some are flexible and formally well grounded, e.g., DEVS or process algebras like the
π calculus

; typically are not easy to use (or/and do not lead to compact models)

Can’t we have our cake, and eat it too?

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 32 / 61

Modeling approaches

Some are focused on specific application domains, e.g., manufacturing, networks, or
cell biology,

; although easy to use, typically are not flexible and lack some formal grounding

Some are flexible and formally well grounded, e.g., DEVS or process algebras like the
π calculus

; typically are not easy to use (or/and do not lead to compact models)

Can’t we have our cake, and eat it too?

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 32 / 61

Abstract syntax snippet

Patterns p ::= S(ẽ,pr)e .x | p +p | 0
Patterns with rest pr ::= p +y

• describe solutions

• relevant species are listed with attributes, contents are recursively defined

• remaining species subsumed in rest solution

Rules r ::= pr
e−→ (ν x̃)e

• describe reactions

• reacting solution specified on left side

• reaction speed given by rate expression

• right side specifies result

Warnke T. et al. (2015): A Multi-Level Modeling Language for Simulating Cell Biological Systems.
Proc. of PADS ’15.
July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 33 / 61

Operational Semantics: Big Step Evaluator and Context

Rules plus current solution ; identifying possible reactions to be applied.

. . . expressions - application of lambda function:

(5)
e1 ⇓s,σ λx .e e2 ⇓s,σ v2 e[v2/x] ⇓s,σ v

e1 e2 ⇓s,σ v

. . . pattern matching - pattern with rest:

(14)
y ∈R p ⇓s,σ s1 s ≈ s1 + s2

p +y ⇓s,σ∪(y 7→s2) s1 + s2

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 34 / 61

Operational Semantics: CTMC semantics

Instantiation of a rule to a reaction

σ : (fv(p +y)) 7→ Vals type preserving σ ′ : x̃ 7→L U injective
p +y ⇓s,σ s e1 ⇓s,σ r e2 ⇓s,σ∪σ ′ s2

p +y e1−→ (ν x̃)e2 ⇓s,σ s r−→ s2

Summing up the rates

s1 ≡ s ′1

((
∑R∈Rules ∑

{(r ′,σ) | R ⇓s′1 ,σ
ρ, ρ `s ′1

r ′−→s ′2 ≡ s2}
r ′
)

+ ∑
{(r ′,k) | s ′1

r ′−→
k

s ′2 ≡ s2}
r ′
)

= r

Rules ` s1
r−→ s2

and this for all sub-solutions
k ∈ {1, . . . ,n} ak = S(ṽ ,s) Rules ` s r−→ s ′

∑
n
i=1 ai

r−→
k

(
∑

k−1
i=1 ai +S(ṽ ,s ′)+ ∑

n
i=k+1 ai

)

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 35 / 61

Continuous Time Markov Chain

A rule (for the breakage of an activated MPF complex):
C(v,p)[Ma:a + s?]:c -> C(v,p)[Yp + D + s?] @ (k4/v)*#a*#c;

500 D
200 Ma
300 Mi
10 Y

500 D
200 Ma
300 Mi
10 Y

501 D
199 Ma
300 Mi
10 Y
1 Yp

500 D
200 Ma
300 Mi
10 Y

Rate?

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 36 / 61

Continuous Time Markov Chain

C(v,p)[Ma:a + s?]:c -> C(v,p)[Yp + D + s?] @ (4.5/v)*#a*#c;

Evaluation of rate with constant k4 = 4.5 and cell volume v = 1.0:
(4.5÷1.0)×200×2 = 1800

500 D
200 Ma
300 Mi
10 Y

500 D
200 Ma
300 Mi
10 Y

501 D
199 Ma
300 Mi
10 Y
1 Yp

500 D
200 Ma
300 Mi
10 Y

1800

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 37 / 61

Pseudo code of simulator

nextstep (sol , rules,t) {
reactions := inst(sol , rules)
rsum : = ∑(_,_,r ,_)∈reactions r
t : = t + Exp(rsum)
reaction := select (reactions, rsum)
sol : = execute (reaction,sol)

}

inst (sol , rules) {
rs := /0
for (p +y e1−→ (ν x̃)e2 ∈ rules)

rs := rs ∪ {(sol ,σ , r ,(ν x̃)e2)|p +y ⇓sol ,σ sol ,e1 ⇓sol ,σ r}
for (S(ṽ ,solsub) ∈ sol)

rs := rs ∪ inst(solsub , rules)
return rs

}

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 38 / 61

Formal semantics are always a bit scary

An operational semantics for Simulink:

Bouissou et al., (2012): An operational semantics for Simulink’s simulation engine. LCTES:
129-138

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 39 / 61

Summary DSLs for modeling

• offer the possibility to combine a compact, succinct description of the model

• with a clear syntax and formal semantics

• however, specificity and generality need always to be balanced

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 40 / 61

Now to DSLs for experimentation,
first of all what do we want to
describe?

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 41 / 61

In-Silico Experiments

Conceptual
Modeling

Formal
Modeling

Specification Implementation

V&V

Experimentation

Collecting
Data

Annotating
Data

Preparing
Data

Model
Repository

Question Conceptual
Model

Formal
Model

 Executable
Model

Simulation
Results

Literature

 Existing
Model

Real World

Data

Question

Rybacki S. et al. (2014): Developing simulation models - from conceptual to executable model and
back - an artifact-based workflow approach. Proc. of Simutools ’14

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 42 / 61

For any experiment, the model need to be executed

• Parallelization: fine-grained (within
one single simulation run) or/and
coarse-grained (over multiple
simulation runs)
• Exploiting GPUs
• Approximative methods: trading

accuracy for speed
• Suitable configuration of simulation

engines
• Adaptive, multi-algorithm methods:

overview and detail on demand

horses for courses

https://en.wikipedia.org/wiki/Edgar_Degas

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 43 / 61

https://en.wikipedia.org/wiki/Edgar_Degas

Configuration of simulators
Simulation algorithms comprise many sub-algorithms, e.g.

• event queue (EQ) implementation

• random number generator (RNG) implementation

Plugins

Def. Java ISAAC RWCRNG

EQ

stoch.
Sim.

Calendar MList Heap

DRM NRM (A,B) TAU

Himmelspach et al. (2007): The event queue problem and PDEVS, Proc. of SpringSim ’07

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 44 / 61

Performance of configured Gillespie variants

D
R

M
; D

ef
. J

av
a

D
R

M
; I

SA
A

C
D

R
M

; L
C

G
D

R
M

; M
T

D
R

M
; R

A
N

D
U

D
R

M
; R

W
C

N
R

M
A

; T
w

oL
is

t2
; D

ef
. J

av
a

N
R

M
A

; T
w

oL
is

t2
; I

SA
A

C
N

R
M

A
; T

w
oL

is
t2

; L
C

G
N

R
M

A
; T

w
oL

is
t2

; M
T

N
R

M
A

; T
w

oL
is

t2
; R

A
N

D
U

N
R

M
A

; T
w

oL
is

t2
; R

W
C

N
R

M
A

; T
w

oL
is

t;
D

ef
. J

av
a

N
R

M
A

; T
w

oL
is

t;
IS

A
A

C
N

R
M

A
; T

w
oL

is
t;

L
C

G
N

R
M

A
; T

w
oL

is
t;

M
T

N
R

M
A

; T
w

oL
is

t;
R

A
N

D
U

N
R

M
A

; T
w

oL
is

t;
R

W
C

N
R

M
A

; B
uc

ke
tT

hr
es

ho
ld

N
R

M
A

; C
al

en
da

r
N

R
M

A
; C

al
en

da
rR

e
N

R
M

A
; H

ea
p

N
R

M
A

; L
az

yQ
ue

ue
N

R
M

A
; M

L
is

t
N

R
M

A
; M

L
is

tR
e

N
R

M
A

; S
im

pl
eB

uc
ke

ts
N

R
M

A
; S

im
pl

eQ
ue

ue
N

R
M

A
; S

im
pl

eB
uc

ke
ts

R
e

N
R

M
A

; S
im

pl
eT

hr
es

ho
ld

N
R

M
B

; T
w

oL
is

t2
N

R
M

B
; T

w
oL

is
t

N
R

M
B

; B
uc

ke
tT

hr
es

ho
ld

N
R

M
B

; C
al

en
da

r
N

R
M

B
; C

al
en

da
rR

e
N

R
M

B
; H

ea
p

N
R

M
B

; L
az

yQ
ue

ue
N

R
M

B
; M

L
is

t
N

R
M

B
; M

L
is

tR
e

N
R

M
B

; S
im

pl
eB

uc
ke

ts
N

R
M

B
; S

im
pl

eQ
ue

ue
N

R
M

B
; S

im
pl

eB
uc

ke
ts

R
e

N
R

M
B

; S
im

pl
eT

hr
es

ho
ld

T
A

U

0

10

20

30

40

50

60

ru
n

tim
e

[s
]

DRM NRMA w. RNG NRMA NRMB
LCS
CCS

Jeschke et al., (2008): Large-Scale Design Space Exploration of SSA. Proc. of CMSB ’08

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 45 / 61

Adaptive Automated Configuration of Algorithms

AdaptationObservation

States
Selection Policy
(e.g. ε-greedy)

Adaptation Policy
(e.g. each n steps)

Reward Function
(e.g. events per

second)

Update Function
(e.g. Q-Learning)

Model
(e.g. number
of entities)

Simulation
Algorithm

(e.g. load of
data

structures)

Environment
(e.g. CPU)

Preprocessor
(e.g. generalization)

Actions
(e.g. set of configurations)

Knowledge Base
(e.g. q value

matrix)

Helms T. et al. (2013): A Generic Adaptive Simulation Algorithm for Component-based Simulation
Systems. Proc. of PADS ’13

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 46 / 61

Trading accuracy for speed: Tau-leaping

• leap condition: how far can I leap without the state changing not too much, referring to
reactions and in- and out-diffusion

• might fall back to basic NSM or Direct Method

• various control parameters

exact

Tau-leaping

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 47 / 61

Applied in a concrete study

N
um

be
r

of
 S

pe
ci

es

Phosphorylized Actin

Simulation Time
0 50 100 150 200

00

40000

80000

120000

• SSA:≈ 39s and≈ 600,000 reactions

• Tau-Leaping: ≈ 1.8s and≈ 15,000 leaps to≈ 0.5s and≈ 5,000 leaps

Helms T. et al. (2013): An approximate execution of rule-based multi-level models, Proc. of CMSB
’13

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 48 / 61

Good execution algorithms is a must,
but more is needed!

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 49 / 61

Experiments - more than only one run

Specification Validation Experiment

Configurator

Run

Analysis

Model

Execution
Observation

Evaluator

Configuration

Analysis

Simulation ConfigurationSimulation ConfigurationSimulation Configuration

Simulation RunSimulation RunSimulation Run

E.g., genetic algorithm,

factorial design,

parameter sweep

E.g., sensitivity

analysis,

creating figure

E.g., mean of equilibrium,

monte-carlo variability

E.g., comparing trajectories,

LTL formula checking

Leye S. et al. (2010): A flexible and extensible architecture for experimental model validation. Proc.
of SimuTools 2010

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 50 / 61

Generating synthetic problem solvers by ensemble
learning

problem
(time-series)

algorithms
(MSER, Schruben,

Goodness-of-Fit, ...)

Leye S. et al. (2014): Composing Problem Solvers for Simulation Experimentation: A Case Study
on Steady State Estimation. PLoS ONE 9(4)

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 51 / 61

Generating synthetic problem solvers by ensemble
learning

problem
(time-series)

algorithms
(MSER, Schruben,

Goodness-of-Fit, ...)

extract features
(mean, variance,

value range)

extract features
(solver result on

problem)

Leye S. et al. (2014): Composing Problem Solvers for Simulation Experimentation: A Case Study
on Steady State Estimation. PLoS ONE 9(4)

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 51 / 61

Generating synthetic problem solvers by ensemble
learning

problem
(time-series)

algorithms
(MSER, Schruben,

Goodness-of-Fit, ...)

extract features
(mean, variance,

value range)
compose

(decision tree)

training
experiment

extract features
(solver result on

problem)

mean

variance variance
≤ 0.6 > 0.6

 ≤ 0.05> 0.05 > 0.1 ≤ 0.1

MSER Schruben GoF MSER

Leye S. et al. (2014): Composing Problem Solvers for Simulation Experimentation: A Case Study
on Steady State Estimation. PLoS ONE 9(4)

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 51 / 61

Generating synthetic problem solvers by ensemble
learning

problem
(time-series)

algorithms
(MSER, Schruben,

Goodness-of-Fit, ...)

extract features
(mean, variance,

value range)
compose

(decision tree)

training
experiment

extract features
(solver result on

problem)

result
(steady state

mean estimate)

mean

variance variance
≤ 0.6 > 0.6

 ≤ 0.05> 0.05 > 0.1 ≤ 0.1

MSER Schruben GoF MSER

Leye S. et al. (2014): Composing Problem Solvers for Simulation Experimentation: A Case Study
on Steady State Estimation. PLoS ONE 9(4)

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 51 / 61

How to describe these kind of
experiments ?

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 52 / 61

SESSL

SESSL (Simulation Experiment Specification via a scala layer) is an internal
domain specific language for specifying experiments.

execute { // execute experiment
new Experiment with ParallelExecution { // create experiment

model = "sampleModel.file" // use model stored in this file
// complex stopping and replication conditions are supported:
stopCondition = AfterSimTime(0.6) and

(AfterWallClockTime(seconds = 30) or AfterSimSteps(10000))
replications = 100
rng = MersenneTwister(1234) // use random number generator
parallelThreads = -1 // exploit parallelism, leave one core idle
// define factorial experiment:
scan("x" <∼ (1, 2), "y" <∼ range(1, 1, 10)) } }

Ewald R. et al. (2014): SESSL: A Domain-Specific Language for Simulation Experiments, TOMACS

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 53 / 61

Optimization

val ref = Set(0, 7561, 8247, 7772, 7918, 7814, 7702)
minimize { (params, objective) =>
execute {
new Experiment with Observation with ParallelExecution {

model = "file-mlrj:/." + dir + "/Wnt_apCrine.mlrj"
// Set model parameters as defined by optimizer:
set("kLphos" <∼ params("p"))
observe("Cell/Nuc/Bcat()")....
withRunResult(results => {

runResults += scala.math.sqrt(mse(numbers, ref))})
withReplicationsResult(results => {

// Store value of objective function:
objective <∼ runResults /count }) } }

} using (new Opt4JSetup {
param("p", 0.1, 0.1, 10) // Optimization parameter bounds
optimizer = sessl.opt4j.SimulatedAnnealing ... }})

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 54 / 61

Statistical model checking
val exp = new Experiment with Hypothesis {

//model configuration
model = "file-sr:/./LotkaVolterra.mlrj"
set("nWolf" <∼ 50,

"nFox" <∼ 500,
"nFood" <∼ 100)

//simulation configuration
simulator = MLRulesTauLeaping()
replications = 10
stopCondition = AfterSimTime(500)

//property
assume{(Probability >= 0.8)(

P(Peak("wolf","wolfPeakH"), time < 250, "wolfNumPeaks"),
Id("wolfPeakH") > 90 and Id("wolfPeakH") < 110,
E(Increase("wolf"), length >= 100, "wolfNumIncreases"),
Id("wolfNumIncreases") after Id("wolfNumPeaks")
)}

}

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 55 / 61

Domain specific languages for
experiments, for setting up entire
experiments or for specifying part of
it, e.g., properties to be checked,
data to be observed!

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 56 / 61

Simulation, theory, and experiment

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 57 / 61

Simulation between theory and experiment

• Both simulations, in-silico
experiments, and real experiments
work with models (formal models
and real models, respectively) and
not on the real system of interest.
• Real model and target system

share the same domain, but are
real experiments necessarily more
reliable than simulations?
• Real experiments might be

epistemologically prior, but not
necessarily superior to simulations.

https://commons.wikimedia.org/wiki/File:
Lab_mouse_mg_3263.jpg

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 58 / 61

https://commons.wikimedia.org/wiki/File:Lab_mouse_mg_3263.jpg
https://commons.wikimedia.org/wiki/File:Lab_mouse_mg_3263.jpg

It is up to us, and suitable domain
specific languages can help a lot!

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 59 / 61

Contributions

• Roland Ewald*: SESSL, evaluation and automatic selection of execution algorithms

• Stefan Leye*: Experimentation layer of James II, automatic generation of components for sensitivity analysis

• Carsten Maus*, Mathias John*: Work on ML-Rules

• Fiete Haack: Lipid raft models, Wnt-model, executing wet-lab studies

• Tobias Helms: ML-Rules simulation engine, ML-Rules τ leaping, automatic selection of execution algorithms

• Danhua Peng: reuse of SESSL experiments, automatic generation of experiments

• Stefan Rybacki: Experimentation as workflow: workflows in M&S (WORMS) and artifact-based approach,
CA-based modeling and simulation approaches, and co-work on ML-Rules

• Tom Warnke: Formal Semantics of ML-Rules, domain-specific language for demography, domain-specific
language for statistical model checking, and statistical model checker

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 60 / 61

thank you for your attention

July, 2015 c© 2015 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 61 / 61

	Motivation

