
Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

The Complexity Crisis
Using Modeling and Simulation for
System Level Analysis and Design

Prof. Dr. François E. Cellier
Computer Science Department

ETH Zurich
Switzerland

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Acknowledgments
Dr. Ernesto Kofman (National University of Rosario,
Argentina) is the originator of the Quantized State System
(QSS) Solvers discussed in this presentation

Xenofon Floros (ETH Zurich, Switzerland) is a Ph.D.
student of mine working on multi-core implementations of
QSS solvers and on making QSS solvers accessible from
within Modelica

Markus Andres and Thomas Schmitt (University of
Applied Sciences of the Vorarlberg, Austria) were two
MS students of mine who implemented free Modelica
libraries for modeling tires and motorcycles

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Modeling and Simulation

yesterday

today

tomorrow

simulation support

system design support

modeling and simulation support

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Modeling and Simulation

The Past

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

ACSL: The Advanced Continuous-system
Simulation Language of the 1980s

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

ACSL: The Advanced Continuous-system
Simulation Language of the 1980s

The typical model contained:
 up to half a dozen differential equations
 up to a few dozen algebraic equations

The simulation was performed using:
 a forth-order explicit Runge-Kutta

solver (default)
 a stiff system implicit BDF solver was

offered in case it should ever be needed

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Summary
 Simulation languages like ACSL offered very little modeling support.
 Once the models got more complex, the code became quickly as

unreadable as if it had been coded in Fortran.
 The primary success of languages like ACSL was based on the fact

that they protected the user from having to understand how the
simulation was done.

 The modeler did not need to understand how numerical ODE solvers
work.

 Most models could be simulated successfully using the default Runge-
Kutta solver. Low-order models are rarely stiff. However, a stiff
system solver was usually offered as an option in case it should ever be
needed.

 Later versions of ACSL and similar tools offered primitive versions of
event handling for dealing with small numbers of discontinuous
functions in the model.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Modeling and Simulation

The Present

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Model-based Design of Systems

What does it buy us?

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Some Common Myths …
• Model-based design saves time and money, because it is much simpler

to design a model than to build a real system.

 To design a reliable model of a complex system is just as
difficult and time-consuming as designing a real system.

• Models are much cheaper than real systems. Models of most system
components are readily available and can be downloaded from the web
for free.

 You get what you pay for. There may indeed exist generic
models for many system components on the web, but will they
be compatible with your overall system model, and will they
even be compatible among each other? Models of specific
components are rarely free. They are proprietary and can be as
expensive as the component they represent.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Advantages of Model-based Design
• Compatible models are much quicker to assemble than real systems.

Thus, time and money is not saved in the design of the component
models themselves, but rather in their composition when building
models of more complex systems.

• Experimentation with models is much easier and faster than with real
systems. Thus, model optimization can lead to better system designs.

• Models can be duplicated for free, i.e., different designers can use the
same model in parallel.

• Models can be made (but are not necessarily) more easily reusable than
real system components. Adapting an existing model (if designed
well) to modified needs is easier and cheaper than modifying a real
system component for the same purpose.

• Models can be made self-documentary, whereas real system
components always require separate spec sheets that may or may not
provide correct information about the component.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Principles of Good Model-based Design
 Since the design of good component models can be quite expensive,

model reusability should be given top priority in model design.
 Model reusability is enhanced by self-documentation of models.

Make each model as easily understandable as possible.
 Graphical models are better readable than equation models due to their

two-dimensional nature. Try to model graphically down as far as
possible. Ultimately, there most be added an equation layer, but that
layer may be made so generic that it can be designed once and for all.

 Small is beautiful! If a model doesn’t fit on a single computer screen,
it is poorly designed and will likely fail when run with unforeseen
parameter combinations.

 Don’t ever write spaghetti code! The irreplaceable programmer
should be fired at once.

 The principles of good modular model design are no different from the
principles of good modular system design.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Principles of Model-based Design II
 The design of a clean and fully documented model interface is even

more important than the design of the model itself.
 A good modeling environment should allow a modeler to modify or

even redesign from scratch any component model. As long as the
interface remains unchanged, the new component model should be
able to replace the former implementation without any need to change
the embedding model.

 Model interface errors are more common than errors caused by
incorrect model specifications. They are usually caused by unwritten
limitations on a model interface.

 It is thus important to design the model interfaces around sound
physical concepts, such as energy flows. A model that connects to a
neighboring model using an interface that represents an energy
interchange port is unlikely to fail.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

The Modelica Modeling Environment
• Modelica is currently the best physical systems modeling environment

on the market.
• Modelica supports object-oriented modeling featuring encapsulation

(information hiding), decomposition (hierarchical modeling),
inheritance (each modeling concept needs to be coded only once), and
abstraction (a graphical user interface).

• The Modelica Standard Library (MSL) offers a large set of (generic)
component models from a wide variety of physical domains.

• Whereas Modelica implementations may be proprietary, the MSL is
maintained by a standard committee and has been placed in the public
domain.

• There exist a large number of additional (free as well as commercial)
Modelica libraries accompanying the MSL.

• Modelica is used widely both in academia and by industry.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Bond Graphs
• Bond graphs offer a generic (domain-independent) approach to object-

oriented graphical modeling of physical systems.
• The bond represents energy flow in a physical system. It carries two

variables, an effort, e, and a flow, f, the product of which represents
power.

e
f

P = e · f e: Effort
f: Flow

Examples: Pel = u · i
Pmech = f · v

[W] = [V] · [A]
= [N] · [m/s]
= [kg · m2 · s-3]

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Example: Electrical Circuit

v1
v2

i0

iL

i1 i2

iC

i0

i0

i0

U0

v0
v0

v0

v0

iL

iL

iL v1

v1

v1

i1

i1 i1

u1

uL

v2 v2

v2

u2

uC

iC

iC

iC

i2

i2 i2

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

An Example II

v0 i
L

P = v0 · i0 = 0 ⇒

i0

i0

i0
U0

v0
v0

v0

iL

iL v1

v1

v1

i1

i1 i1

u1

uL

v2 v2

v2

u2

uC

iC

iC

iC

i2

i2 i2

v0 = 0

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

An Example III

U0

uL

i0

iL

v1

i1

i1 i1

u1

v2 u2

uC iC

i2

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Bond Graphs II
 Bond graphs offer the most primitive graphical user interface that is

still fully object-oriented.
 Bond graph-based libraries enable the model designer to continue

using graphical modeling as far down as possible.
 The underlying lower-most equation-based model layer is so simple

and so generic that it can be coded once and for all.
 The model designer thus rarely needs to code any equations at all.
 The basic (leaf) models are simple and easily maintainable.
 However, bond graphs rarely represent a suitable end-user interface.
 Model abstraction is being used to wrap bond graph models into higher

abstraction layers that are more comfortable to use.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

General Bond Graph Libraries from ETH
• ETH Zurich maintains three general bond graph libraries that are all in

the public domain.
• They represent an alternative to the MSL in many respects.
• A disadvantage might be that these libraries are used by a smaller

number of customers, and consequently, the models contained in them
may be less thoroughly tested.

• An advantage is that the average bond graph models are smaller in size
and therefore more easily understandable and maintainable.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

ETH General Bond Graph Libraries II
• BondLib is a library consisting of models making use of scalar (black)

bonds. Sub-libraries exist for electrical circuits (including an
implementation of SPICE), for mechanical 1D models, for hydraulics
(not in the MSL) and pneumatics (not in the MSL), and for irreversible
thermodynamics.

• MultiBondLib is a library consisting of models making use of (blue)
vector bonds, called multi-bonds. Sub-libraries exist for multi-body
system dynamics, especially 2D mechanical systems (not in the MSL),
3D mechanical systems, 3D mechanical systems with ideal impacts
(not in the MSL), and 3D mechanical systems in a gravitational pool
(not in the MSL).

• ThermoBondLib is a library consisting of models making use of (red)
vector bonds representing simultaneous flows of mass, volume, and
heat. This library is primarily useful for the description of convective
flows (computational fluid dynamics) and chemical reaction dynamics.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

A Crane Crab

Standard Modelica
multi-body systems
library

Planar mechanics
sub-library of the
multi-bond graph
library

• The standard Modelica multi-
body systems library is a general-
purpose 3D mechanics library. No
separate support for planar
mechanics is currently being
offered.

• The multi-bond graph library
contains separate sub-libraries for
planar mechanics and 3D
mechanics, as well as for
modeling hard collisions between
mechanical bodies and for
modeling gravitational pools
(celestial mechanics).

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Revolute Joints

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

The 3D Revolute Joint

Coordinate transformation
from frame_a to frame_b

The orientation matrix
is computed from the
relative angle φ by the
planar rotation
method.

Relative velocity and
position of joint are
computed here

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

The 3D Revolute Joint II

Additional rotational
velocity is added here,
in case the joint is being
used as a drive, i.e., if
external torque is being
introduced at the effort
source.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Modularization of Model Design
• A car manufacturer chooses what his new car model should look like

and what gadgets should be implemented. Many vehicle components
are however being built by other companies. The new model may
feature an engine from Japan and a transmission from Brazil. Car
manufacturers would never dream of manufacturing the tires of their
vehicles by themselves. Those are being designed and built by tire
specialists, such as Michelin or Goodyear.

• The same applies to model-based design. Car manufacturers should
not have to worry about creating models of their tires. They should be
able to acquire tire models that are reliable and that were created by
tire specialists.

• A good tire model is paramount to being able to test the driving
characteristics of the new vehicle already in the simulation model.
Such a model is quite complex, and designing it is no easy task.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Wheels and Tires

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Wheels and Tires: Influences

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Wheels and Tires: Modular Design

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Wheels and Tires: Friction Model

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Wheels and Tires: Summary

Our free Wheels and Tires library does not contain parameter
sets for any commercial tires currently on the market. To
provide those is typically the realm of commercial libraries.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

A Bicycle Model

Start Presentation November 15, 2012 © Prof. Dr. François E. Cellier

A Bicycle Model II

• A multi-bond graph represents rarely the most suitable user interface.
However, this is precisely the model that gets simulated. The multi-bond
graph sits underneath the multi-body system description shown previously.

Start Presentation November 15, 2012 © Prof. Dr. François E. Cellier

Efficiency of Simulation Runs
• The following table compares the efficiency of the simulation code obtained

using the multi-body library contained as part of the MSL with that obtained
using the 3D mechanics sub-library of the MultiBondGraph library.

MSL MultiBondGraph

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Special Bond Graph Libraries
• Wheels and Tires is a state-of-the-art free bond graph-based library

offering complex models of wheels and tires. Tire models of different
complexities can be assembled in an object-oriented fashion. The
library is built on top of the MultiBondLib library.

• MotorVehicle is a free bond graph-based library offering models of
components of motor vehicles including models of motor vehicle
riders. It is built on top of the MultiBondLib and Wheels and Tires
Modelica libraries.

• SpiceTestLib is a free bond graph-based library of electronic circuit
models for testing the Spice implementation contained in the BondLib
library. The Spice implementation inside BondLib is considerably
more complete than the corresponding library offered as part of the
MSL. It features both bipolar and Mosfet transistor models at many
different levels of complexity.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Summary
 Model-based design is the way of the future.
 The systems to be designed by engineers are getting ever more

complex. The increasing system complexity can only be managed
within reasonable time by virtualization of the design.

 Your product will only sell if it is better than what the competition has
to offer. Model-based design doesn’t necessarily lead to cheaper
systems, but it will invariably lead to better designed systems.

 An object-oriented modeling and simulation environment, such as
Modelica, in combination with a rich library of well-designed base
models is a powerful ally in product design virtualization.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Summary II
 Typical models today contain a few dozen state variables and several

hundred if not a few thousand (significant) algebraic variables.
 These (multi-energy domain) models are almost invariably stiff.
 Modelica implementations offer therefore a stiff system solver (usually

DASSL) as their default simulation tool.
 Modelica compilers offer algorithms for symbolic index reduction

(elimination of structural singularities) and for the treatment of
algebraic loops including selection of small numbers of tearing
(iteration) variables.

 They also offer sophisticated algorithms for robust discontinuity
handling in complex models including methods for finding consistent
sets of initial conditions after event handling (possibly involving
algebraic loops in discrete state variables).

 They finally offer algorithms for dynamic state selection (for the
elimination of dynamic singularities).

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Modeling and Simulation

The Future

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Full System Design
• The first Airbus A380 aircraft

was delivered to the end customer
with a delay of roughly one year.

• The system has become so
complex that it is no longer
possible to test such an aircraft in
all of its potential modes of
operation before delivering it to
the customer.

• The electric cable tree alone is roughly 500 km long and has tens of thousands
of connections.

• A full system model of the aircraft features thousands of state variables and
tens of thousands of algebraic variables.

• This opens up an entirely new ballgame for modeling and simulation
environments.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Full System Design II

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Full System Design III
• In the cardiovascular system, each major blood vessel needs to be

represented as a container of blood, i.e., a compressible fluid with
inertia. Hence each blood vessel contains a (bond graph) capacitor to
represent the compressibility of the fluid and a (bond graph) inductor
to represent the inert mass. Thus, each blood vessel exhibits second-
order dynamics.

• There is already now demand for full-body simulations, including not
only the (relatively simple) cardiovascular system, but every single
organ of the human body.

• A full-body human model will once again be characterized by
thousands of state variables and tens of thousands of algebraic
variables.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Full System Design IV

• Modeling support discusses features needed in a future system design
software that are not currently supported in Modelica.

• Simulation support discusses aspects of simulators (differential and
algebraic equation solvers) that are not currently supported in
Modelica.

• System design support discusses facets of complex system design that
go beyond mere modeling and simulation support and that will need to
be offered by system design software environments of the future.

We shall distinguish between three facets of system design support:

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Modeling Support
The object-oriented modeling paradigm scales generally well. Thus,
formulating a model that is ten or even hundred times as big as current
models is not problematic per se.
Sometimes it may be useful to model digital electronic circuits using
analog components, i.e., detailed transistor models.
A digital circuit can easily contain many thousands of digital computing
elements. Representing such a circuit using analog components is
straightforward from a modeling point of view.
Such a model will not simulate in any of today’s Modelica
implementations, but this is a simulation problem and not a modeling
problem. I shall explain in due course, why such a model cannot be
simulated using today’s simulation technology.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Modeling Support: Variable Structure Systems
 A major shortcoming of Modelica even today is its inability to deal

with variable structure systems.
 Every mechanical system with a clutch needs to be represented by a

variable structure model. Two axles that are connected by a clutch
exhibit second-order dynamics while the clutch is engaged, but they
show fourth-order dynamics when the clutch is disengaged. Thus, the
number of differential equations changes dynamically during the
simulation depending on a parameter value.

 A system exhibiting this property is called a variable structure system.
Modelica does not currently support the simulation of variable
structure models.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Modeling Support: Variable Structure Systems II
Two tools that offer partial solutions to this problem are Mosilab and Sol.
• Mosilab slightly generalizes the Modelica language. It makes use of

dynamic model switching (similar to Modelica’s approach to dynamic
state selection) to deal with variable structure models. Unfortunately,
the approach doesn’t scale well as 10 dynamic structure switches call
for 1024 different models to be maintained with potentially 523,776
possible transitions between them (!)

• Sol, developed by Dirk Zimmer, a former Ph.D. student of mine, in his
Ph.D. dissertation, proposes dynamic causalization instead. When a
structure change occurs, the model is reconfigured on the fly by
incremental compilation. However, Sol is only available as a
prototype until now and doesn’t implement many of the other
algorithms that are offered by full-fledged Modelica compilers.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Modeling Support: Model Activation/Deactivation
Support of variable structure models will become more important in future
system design environments.
• In a complex system, it must be possible to activate models as new

subsystems enter the system and deactivate them when they leave the
system. For example, in a traffic simulation of a busy intersection, it
may be desirable to represent individual cars by physical models.
When a car enters the intersection to be simulated, its model needs to
be added to the overall model. When a car leaves the intersection, its
model needs to be removed.

• Similarly, it should be possible to replace a complex model of a
component by a simpler one when not much activity is occurring in
that subsystem.

• All of the above features require support of variable structure systems
modeling.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Modeling Support: Model Pruning
• A related feature is model pruning. It should be possible to simulate a

system with different levels of granularity, i.e., different degrees of
model resolution.

• To this end, it must be possible to simplify models in an automated
fashion. For example in a DC motor, it may be desirable to exclude
the armature inductance. If this is done dynamically in a current
Modelica implementation (by setting L=0 at event time), the
simulation will die with a division by zero.

• Model pruning once again leads to variable structure models, but the
demands on the modeling support software are more severe in this
case, because the software should be capable of recognizing on its
own, where and when simplifications are feasible and be able to enact
those without human intervention.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Simulation Support
While the object-oriented modeling paradigm scales well, the same
unfortunately does not hold true for the current class of stiff system
solvers.
• All stiff system solvers are implicit solvers. It can be shown that

explicit solvers can never be stiffly stable. They all force the solver to
use step sizes that are small in comparison to the smallest time constant
in the system. Otherwise the numerical stability of the algorithm will
be lost.

• Traditional implicit solvers require that the (usually non-linear) set of
model equations be solved iteratively during each step. To this end, a
Newton iteration is set up that spans over all model equations.

• During each iteration step, a large linear set of equations needs to be
solved.

• The computational effort therefore grows cubically with the
number of state variables in the model.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Simulation Support II
• If a simulation with 50 state variables executes in a few seconds, a

simulation with 500 state variables will take a few hours to simulate.
• Some Modelica implementations, such as Dymola, meanwhile make

use of sparse linear system solvers to mitigate the scaling problem.
• While sparse linear system solvers make the simulations faster, they

still don’t solve the problem. Large models still simulate too slowly.
• In order to overcome these problems, we need to get away from

centralized schemes for simulating large systems.
• Quantized state system (QSS) solvers offer a way out in may cases.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Simulation Support: QSS Solvers
• Traditional ODE and DAE solvers make use of time slicing. Given the

current and past state and state derivative values, the value of the state
one time step into the future, i.e., at time tk+1, is being estimated. At
that time, the new state can assume any real-valued number.

• QSS solvers operate differently. Rather than discretizing the time axis,
they discretize the state axis, i.e., they operate on quantized states.
They evaluate the next state value at the first time instant in the future
at which the state variable differs from its current value by one
quantum level, i.e., when xk+1 = xk ± ∆x.

• QSS solvers are naturally asynchronous. Each state variable carries its
own simulation clock.

• As QSS solvers offer dense output, each solver knows the current
values of all other neighboring states whenever it undergoes its own
internal transition.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Simulation Support: QSS Solvers II
• Convergence and stability properties for QSS solvers have meanwhile

been established.
• QSS solvers even offer an advantage in this respect. Whereas

traditional solvers only estimate the local integration error within one
step, QSS solvers offer an upper bound on the global simulation error
across the entire simulation at least for linear systems.

• When simulating a small-scale non-stiff model without discontinuities,
QSS solvers are slightly less efficient than explicit Runge-Kutta
solvers (there is a slightly bigger overhead). These models don’t offer
anything that the QSS solvers can exploit. However, such models are
not of much interest today, because any solver can deal with them
efficiently, and the QSS solvers will not fare much worth than any of
the traditional solvers.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Simulation Support: QSS Solvers III
QSS solvers are more efficient than traditional solvers when facing
discontinuities, as there is no need for iterating on (state) event times.

Buck converter circuit

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Simulation Support: QSS Solvers IV

QSS solvers are more efficient than DASSL on this problem. The heavier
and more frequent the discontinuities occur, the better will be the relative
performance of QSS. On one example, QSS was about 20 times faster
than DASSL.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Simulation Support: QSS Solvers V
• A considerably more important advantage can be obtained when

dealing with large-scale stiff systems.
• A set of linearly implicit stiff quantized state system (LIQSS) solvers

has been developed. Although these are implicit solvers, they do not
call for Newton iteration. The reason is that in each step, there are
only two possible outcomes: the state either increases or decreases by
one quantum level.

• To demonstrate the advantage, an inverter chain (a simplified model of
a transmission line) with a fast load at the end was simulated. Each
logical inverter is represented by a second-order system. Thus 500
inverters lead to 1000 differential equations. As the load is fast, the
overall system is stiff, and consequently, Dymola has no choice but to
employ a stiff system solver. Of the different stiff system solvers
available in Dymola, Esdirk23a turned out most efficient for this
simulation. Hence this is what we compared LIQSS against.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Simulation Support: QSS Solvers VI
• The cubic growth of the

computational load as a
function of the system size
for classical (BDF-type)
stiff system solvers is
clearly visible.

• In contrast, the comput-
ational load grows only
linearly in the number of
differential equations for
LIQSS solvers.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Simulation Support: QSS Solvers VII

 LIQSS simulated this problem almost 1000 times faster than Dymola
(using Esdirk23a), and 300 times faster than Matlab (using Ode15s).

 LIQSS was even almost twice as fast as a multi-rate solver that had
been specifically designed for this particular problem (the problem
specification was taken from a paper introducing the multi-rate
algorithm).

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Simulation Support: Event Density
 Let us assume that, in a particular model, there occur x discontinuities

per unit of simulation time.
 Discontinuities can be assumed to occur statistically independent of

each other.
 Thus, if the system is 10 times as big, we can expect roughly 10 times

as many discontinuities per time unit.
 Therefore, the event density grows linearly with the size of the system

to be simulated.
 In a classical (stiff or non-stiff) solver, the execution time grows

quadratically in the number of events.
 In contrast, the execution time grows only linearly in the number of

events when using QSS solvers.
 Once again, QSS solvers turn out to offer an advantage over classical

solvers in this respect.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Simulation Support: Event Density II
We simulated a spiking neural network with a varying number of
neurons.
 Each neuron is represented by a set of differential equations with

discontinuities.
 The larger the number of neurons, the larger the event density, i.e., the

more discontinuities will occur per unit of simulation time.
 The model is non-stiff. Therefore we compared two versions of a non-

stiff third-order accurate QSS solver (QSS3 with constant and
logarithmic quantization) with two non-stiff (explicit) classical solvers:
a Runge-Kutta-Fehlberg (RK4/5) and a Bulirsch-Stoer (BS) solver.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Simulation Support: Event Density III
 The execution time grows linearly

with the number of neurons when
using non-stiff QSS solvers.

 It grows quadratically with the
number of neurons when using
classical non-stiff solvers such as a
Runge-Kutta-Fehlberg (RK4/5) or a
Bulirsch-Stoer (BS) solver.

 For small numbers of neurons the
execution speed is approximately the
same in all cases. RK4/5 and BS
execute roughly 20% faster than QSS3
when simulating a single neuron, but
this is irrelevant.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Simulation Support: Parallelization

 Using a QSS solver, each state variable carries its own simulation
clock.

 The simulations of different states execute in a naturally asynchronous
fashion.

 For this reason, QSS solvers lend themselves much more easily to
parallelization (implementation on a multi-core architecture) than
classical solvers.

 This applies to both the stiff and the non-stiff versions, but the
advantage becomes more pronounced in the stiff case.

 The parallelization scales very well, even with large numbers of cores.
Classical schemes saturate much more quickly when parallelized.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Simulation Support: Parallelization II

We studied the control of electric power consumption of a number of air
conditioner units controlling the temperature values in different rooms of a
big building.
 We simulated the system using QSS solvers for all state variables in the

system.
 The solvers were distributed over a multi-core architecture.
 Each solver synchronizes its own simulation clock with the wall clock,

but no attempt was made to synchronize the local simulation clocks of
the individual solvers between each other.

 We studied the performance of the simulation while varying the number
of cores involved in the simulation.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Simulation Support: Parallelization III

 The execution speed grows
even a bit faster than linearly
for up to 12 parallel processes
(6 cores interleaved) tested.

 The faster-than-linear speedup
is caused by reduced overhead
associated with the shorter
event queue.

 No saturation is noticeable.
 Classical schemes tend to

already begin to saturate when
more than 4 parallel processes
are involved.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

System Design Support
 System design support entails much more than just modeling and

simulation support. Series of simulation experiments need to be
designed around a model.

 Most Modelica environments offer some support for experimental
design in the form of a scripting language.

 Unfortunately, the scripting language has not (yet) been standardized
by the Modelica Consortium, and it may be difficult to do so due to
diverging interests among the Consortium members.

 For this reason, scripting support varies a lot from one environment to
another.

 With respect to modeling and simulation support, Dymola is the
strongest competitor on the market by a good margin. With respect to
scripting support it is almost the weakest. Its scripting language is
poor by design and even more poorly documented.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

System Design Support II
 Scripting support is important and will gain importance as we proceed

to modeling and simulating ever larger systems.
 We will need a stable scripting platform before system design efforts

can begin in earnest.
 For this reason, it is important that the Modelica Consortium tackles

this problem, even if the negotiations should turn out to be difficult.
 Once a stable scripting platform is available, many players will be

available to develop system design tools on the shoulders of that
platform.

 This is comparable to the efforts that went into the development of the
Modelica Standard Library (MSL). These efforts could not begin until
the Modelica language had been standardized. In the meantime,
hundreds if not thousands of man years of design and development
work have gone into making the MSL what it has become.

Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013

Conclusions
Size matters!
 Small-scale systems (containing a few state variables) can be modeled

and simulated using any tool/algorithm available.
 Medium-scale systems (characterized by a few dozen state variables)

require heavy modeling support for organizing the models. On the
simulation side, they require a robust stiff system solver, such as
DASSL.

 Large-scale models (defined by several hundreds or thousands of state
variables) require decentralized simulation tools, such as QSS solvers.

 Support for variable structure system modeling as well as decent
scripting support would already have been useful at the level of
medium-scale system modeling and simulation, but are still lacking.
At the level of large-scale system modeling, these will become even
more important.

	The Complexity Crisis
	Acknowledgments
	Modeling and Simulation
	Modeling and Simulation
	ACSL: The Advanced Continuous-system Simulation Language of the 1980s
	ACSL: The Advanced Continuous-system Simulation Language of the 1980s
	Summary
	Modeling and Simulation
	Model-based Design of Systems
	Some Common Myths …
	Advantages of Model-based Design
	Principles of Good Model-based Design
	Principles of Model-based Design II
	The Modelica Modeling Environment
	Bond Graphs
	Example: Electrical Circuit
	An Example II
	An Example III
	Bond Graphs II
	General Bond Graph Libraries from ETH
	ETH General Bond Graph Libraries II
	A Crane Crab
	Revolute Joints
	The 3D Revolute Joint
	The 3D Revolute Joint II
	Modularization of Model Design
	Wheels and Tires
	Wheels and Tires: Influences
	Wheels and Tires: Modular Design
	Wheels and Tires: Friction Model
	Wheels and Tires: Summary
	A Bicycle Model
	A Bicycle Model II
	Efficiency of Simulation Runs
	Special Bond Graph Libraries
	Summary
	Summary II
	Modeling and Simulation
	Full System Design
	Full System Design II
	Full System Design III
	Full System Design IV
	Modeling Support
	Modeling Support: Variable Structure Systems
	Modeling Support: Variable Structure Systems II
	Modeling Support: Model Activation/Deactivation
	Modeling Support: Model Pruning
	Simulation Support
	Simulation Support II
	Simulation Support: QSS Solvers
	Simulation Support: QSS Solvers II
	Simulation Support: QSS Solvers III
	Simulation Support: QSS Solvers IV
	Simulation Support: QSS Solvers V
	Simulation Support: QSS Solvers VI
	Simulation Support: QSS Solvers VII
	Simulation Support: Event Density
	Simulation Support: Event Density II
	Simulation Support: Event Density III
	Simulation Support: Parallelization
	Simulation Support: Parallelization II
	Simulation Support: Parallelization III
	System Design Support
	System Design Support II
	Conclusions

