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Modeling and Simulation 

The Past 
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ACSL: The Advanced Continuous-system 
Simulation Language of the 1980s 
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ACSL: The Advanced Continuous-system 
Simulation Language of the 1980s 

The typical model contained: 
 up to half a dozen differential equations 
 up to a few dozen algebraic equations 

The simulation was performed using: 
 a forth-order explicit Runge-Kutta 

solver (default) 
 a stiff system implicit BDF solver was 

offered in case it should ever be needed 
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Summary 
 Simulation languages like ACSL offered very little modeling support. 
 Once the models got more complex, the code became quickly as 

unreadable as if it had been coded in Fortran. 
 The primary success of languages like ACSL was based on the fact 

that they protected the user from having to understand how the 
simulation was done. 

 The modeler did not need to understand how numerical ODE solvers 
work. 

 Most models could be simulated successfully using the default Runge-
Kutta solver.  Low-order models are rarely stiff.  However, a stiff 
system solver was usually offered as an option in case it should ever be 
needed. 

 Later versions of ACSL and similar tools offered primitive versions of 
event handling for dealing with small numbers of discontinuous 
functions in the model. 
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Modeling and Simulation 

The Present 
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Model-based Design of Systems 

What does it buy us? 
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Some Common Myths … 
• Model-based design saves time and money, because it is much simpler 

to design a model than to build a real system. 

 To design a reliable model of a complex system is just as 
difficult and time-consuming as designing a real system. 

• Models are much cheaper than real systems.  Models of most system 
components are readily available and can be downloaded from the web 
for free. 

 You get what you pay for.  There may indeed exist generic 
models for many system components on the web, but will they 
be compatible with your overall system model, and will they 
even be compatible among each other?  Models of specific 
components are rarely free.  They are proprietary and can be as 
expensive as the component they represent. 
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Advantages of Model-based Design 
• Compatible models are much quicker to assemble than real systems.  

Thus, time and money is not saved in the design of the component 
models themselves, but rather in their composition when building 
models of more complex systems. 

• Experimentation with models is much easier and faster than with real 
systems.  Thus, model optimization can lead to better system designs. 

• Models can be duplicated for free, i.e., different designers can use the 
same model in parallel. 

• Models can be made (but are not necessarily) more easily reusable than 
real system components.  Adapting an existing model (if designed 
well) to modified needs is easier and cheaper than modifying a real 
system component for the same purpose. 

• Models can be made self-documentary, whereas real system 
components always require separate spec sheets that may or may not 
provide correct information about the component. 
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Principles of Good Model-based Design 
 Since the design of good component models can be quite expensive, 

model reusability should be given top priority in model design. 
 Model reusability is enhanced by self-documentation of models.  

Make each model as easily understandable as possible. 
 Graphical models are better readable than equation models due to their 

two-dimensional nature.  Try to model graphically down as far as 
possible.  Ultimately, there most be added an equation layer, but that 
layer may be made so generic that it can be designed once and for all. 

 Small is beautiful!  If a model doesn’t fit on a single computer screen, 
it is poorly designed and will likely fail when run with unforeseen 
parameter combinations. 

 Don’t ever write spaghetti code!  The irreplaceable  programmer 
should be fired at once. 

 The principles of good modular model design are no different from the 
principles of good modular system design. 
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Principles of Model-based Design II 
 The design of a clean and fully documented model interface is even 

more important than the design of the model itself. 
 A good modeling environment should allow a modeler to modify or 

even redesign from scratch any component model.  As long as the 
interface remains unchanged, the new component model should be 
able to replace the former implementation without any need to change 
the embedding model. 

 Model interface errors are more common than errors caused by 
incorrect model specifications.  They are usually caused by unwritten 
limitations on a model interface. 

 It is thus important to design the model interfaces around sound 
physical concepts, such as energy flows.  A model that connects to a 
neighboring model using an interface that represents an energy 
interchange port is unlikely to fail. 
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The Modelica Modeling Environment 
• Modelica is currently the best physical systems modeling environment 

on the market. 
• Modelica supports object-oriented modeling featuring encapsulation 

(information hiding), decomposition (hierarchical modeling), 
inheritance (each modeling concept needs to be coded only once), and 
abstraction (a graphical user interface). 

• The Modelica Standard Library (MSL) offers a large set of (generic) 
component models from a wide variety of physical domains. 

• Whereas Modelica implementations may be proprietary, the MSL is 
maintained by a standard committee and has been placed in the public 
domain. 

• There exist a large number of additional (free as well as commercial) 
Modelica libraries accompanying the MSL. 

• Modelica is used widely both in academia and by industry. 
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Bond Graphs 
• Bond graphs offer a generic (domain-independent) approach to object-

oriented graphical modeling of physical systems. 
• The bond represents energy flow in a physical system.  It carries two 

variables, an effort, e, and a flow, f, the product of which represents 
power. 

e 
f 

P = e · f e: Effort 
f: Flow 

Examples: Pel     = u · i 
Pmech = f  · v 

[W] = [V] · [A] 
= [N] · [m/s] 
= [kg · m2 · s-3] 
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Example: Electrical Circuit 
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An Example II 
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An Example III 
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Bond Graphs II 
 Bond graphs offer the most primitive graphical user interface that is 

still fully object-oriented. 
 Bond graph-based libraries enable the model designer to continue 

using graphical modeling as far down as possible. 
 The underlying lower-most equation-based model layer is so simple 

and so generic that it can be coded once and for all. 
 The model designer thus rarely needs to code any equations at all. 
 The basic (leaf) models are simple and easily maintainable. 
 However, bond graphs rarely represent a suitable end-user interface. 
 Model abstraction is being used to wrap bond graph models into higher 

abstraction layers that are more comfortable to use. 
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General Bond Graph Libraries from ETH 
• ETH Zurich maintains three general bond graph libraries that are all in 

the public domain. 
• They represent an alternative to the MSL in many respects. 
• A disadvantage might be that these libraries are used by a smaller 

number of customers, and consequently, the models contained in them 
may be less thoroughly tested. 

• An advantage is that the average bond graph models are smaller in size 
and therefore more easily understandable and maintainable. 
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ETH General Bond Graph Libraries II 
• BondLib is a library consisting of models making use of scalar (black) 

bonds.  Sub-libraries exist for electrical circuits (including an 
implementation of SPICE), for mechanical 1D models, for hydraulics 
(not in the MSL) and pneumatics (not in the MSL), and for irreversible 
thermodynamics. 

• MultiBondLib is a library consisting of models making use of (blue) 
vector bonds, called multi-bonds.  Sub-libraries exist for multi-body 
system dynamics, especially 2D mechanical systems (not in the MSL), 
3D mechanical systems, 3D mechanical systems with ideal impacts 
(not in the MSL),  and 3D mechanical systems in a gravitational pool 
(not in the MSL). 

• ThermoBondLib is a library consisting of models making use of (red) 
vector bonds representing simultaneous flows of mass, volume, and 
heat.  This library is primarily useful for the description of convective 
flows (computational fluid dynamics) and chemical reaction dynamics. 
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A Crane Crab 

Standard Modelica 
multi-body systems 
library 

Planar mechanics 
sub-library of the 
multi-bond graph 
library 

• The standard Modelica multi-
body systems library is a general-
purpose 3D mechanics library. No 
separate support for planar 
mechanics is currently being 
offered. 

• The multi-bond graph library 
contains separate sub-libraries for 
planar mechanics and 3D 
mechanics, as well as for 
modeling hard collisions between 
mechanical bodies and for 
modeling gravitational pools 
(celestial mechanics). 
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Revolute Joints 
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The 3D Revolute Joint 

Coordinate transformation 
from frame_a to frame_b 

The orientation matrix 
is computed from the 
relative angle φ by the 
planar rotation 
method. 

Relative velocity and 
position of joint are 
computed here 
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The 3D Revolute Joint II 

Additional rotational 
velocity is added here, 
in case the joint is being 
used as a drive, i.e., if 
external torque is being 
introduced at the effort 
source. 
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Modularization of Model Design 
• A car manufacturer chooses what his new car model should look like 

and what gadgets should be implemented.  Many vehicle components 
are however being built by other companies.  The new model may 
feature an engine from Japan and a transmission from Brazil.  Car 
manufacturers would never dream of manufacturing the tires of their 
vehicles by themselves.  Those are being designed and built by tire 
specialists, such as Michelin or Goodyear. 

• The same applies to model-based design.  Car manufacturers should 
not have to worry about creating models of their tires.  They should be 
able to acquire tire models that are reliable and that were created by 
tire specialists. 

• A good tire model is paramount to being able to test the driving 
characteristics of the new vehicle already in the simulation model. 
Such a model is quite complex, and designing it is no easy task. 
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Wheels and Tires 
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Wheels and Tires: Influences 
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Wheels and Tires: Modular Design 
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Wheels and Tires: Friction Model 
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Wheels and Tires: Summary 

Our free Wheels and Tires library does not contain parameter 
sets for any commercial tires currently on the market.  To 
provide those is typically the realm of commercial libraries. 
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A Bicycle Model 
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A Bicycle Model II 

• A multi-bond graph represents rarely the most suitable user interface.  
However, this is precisely the model that gets simulated.  The multi-bond 
graph sits underneath the multi-body system description shown previously. 
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Efficiency of Simulation Runs 
• The following table compares the efficiency of the simulation code obtained 

using the multi-body library contained as part of the MSL with that obtained 
using the 3D mechanics sub-library of the MultiBondGraph library. 

MSL MultiBondGraph 
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Special Bond Graph Libraries 
• Wheels and Tires is a state-of-the-art free bond graph-based library 

offering complex models of wheels and tires.  Tire models of different 
complexities can be assembled in an object-oriented fashion.  The 
library is built on top of the MultiBondLib library. 

• MotorVehicle is a free bond graph-based library offering models of 
components of motor vehicles including models of motor vehicle 
riders.  It is built on top of the MultiBondLib and Wheels and Tires 
Modelica libraries. 

• SpiceTestLib is a free bond graph-based library of electronic circuit 
models for testing the Spice implementation contained in the BondLib 
library.  The Spice implementation inside BondLib is considerably 
more complete than the corresponding library offered as part of the 
MSL.  It features both bipolar and Mosfet transistor models at many 
different levels of complexity. 
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Summary 
 Model-based design is the way of the future. 
 The systems to be designed by engineers are getting ever more 

complex.  The increasing system complexity can only be managed 
within reasonable time by virtualization of the design. 

 Your product will only sell if it is better than what the competition has 
to offer.  Model-based design doesn’t necessarily lead to cheaper 
systems, but it will invariably lead to better designed systems. 

 An object-oriented modeling and simulation environment, such as 
Modelica, in combination with a rich library of well-designed base 
models is a powerful ally in product design virtualization. 
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Summary II 
 Typical models today contain a few dozen state variables and several 

hundred if not a few thousand (significant) algebraic variables. 
 These (multi-energy domain) models are almost invariably stiff. 
 Modelica implementations offer therefore a stiff system solver (usually 

DASSL) as their default simulation tool. 
 Modelica compilers offer algorithms for symbolic index reduction 

(elimination of structural singularities) and for the treatment of 
algebraic loops including selection of small numbers of tearing 
(iteration) variables. 

 They also offer sophisticated algorithms for robust discontinuity 
handling in complex models including methods for finding consistent 
sets of initial conditions after event handling (possibly involving 
algebraic loops in discrete state variables). 

 They finally offer algorithms for dynamic state selection (for the 
elimination of dynamic singularities). 
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Modeling and Simulation 

The Future 



Start Presentation © Prof. Dr. François E. CellierJuly 30, 2013 

Full System Design 
• The first Airbus A380 aircraft 

was delivered to the end customer 
with a delay of roughly one year. 

• The system has become so 
complex that it is no longer 
possible to test such an aircraft in 
all of its potential modes of 
operation before delivering it to 
the customer. 

• The electric cable tree alone is roughly 500 km long and has tens of thousands 
of connections. 

• A full system model of the aircraft features thousands of state variables and 
tens of thousands of algebraic variables. 

• This opens up an entirely new ballgame for modeling and simulation 
environments. 
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Full System Design II 
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Full System Design III 
• In the cardiovascular system, each major blood vessel needs to be 

represented as a container of blood, i.e., a compressible fluid with 
inertia.  Hence each blood vessel contains a (bond graph) capacitor to 
represent the compressibility of the fluid and a (bond graph) inductor 
to represent the inert mass.  Thus, each blood vessel exhibits second-
order dynamics. 

• There is already now demand for full-body simulations, including not 
only the (relatively simple) cardiovascular system, but every single 
organ of the human body. 

• A full-body human model will once again be characterized by 
thousands of state variables and tens of thousands of algebraic 
variables. 
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Full System Design IV 

• Modeling support discusses features needed in a future system design 
software that are not currently supported in Modelica. 

• Simulation support discusses aspects of simulators (differential and 
algebraic equation solvers) that are not currently supported in 
Modelica. 

• System design support discusses facets of complex system design that 
go beyond mere modeling and simulation support and that will need to 
be offered by system design software environments of the future. 

We shall distinguish between three facets of system design support: 
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Modeling Support 
The object-oriented modeling paradigm scales generally well.  Thus, 
formulating a model that is ten or even hundred times as big as current 
models is not problematic per se. 
Sometimes it may be useful to model digital electronic circuits using 
analog components, i.e., detailed transistor models. 
A digital circuit can easily contain many thousands of digital computing 
elements.  Representing such a circuit using analog components is 
straightforward from a modeling point of view. 
Such a model will not simulate in any of today’s Modelica 
implementations, but this is a simulation problem and not a modeling 
problem.  I shall explain in due course, why such a model cannot be 
simulated using today’s simulation technology. 
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Modeling Support: Variable Structure Systems 
 A major shortcoming of Modelica even today is its inability to deal 

with variable structure systems. 
 Every mechanical system with a clutch needs to be represented by a 

variable structure model.  Two axles that are connected by a clutch 
exhibit second-order dynamics while the clutch is engaged, but they 
show fourth-order dynamics when the clutch is disengaged.  Thus, the 
number of differential equations changes dynamically during the 
simulation depending on a parameter value. 

 A system exhibiting this property is called a variable structure system.  
Modelica does not currently support the simulation of variable 
structure models. 
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Modeling Support: Variable Structure Systems II 
Two tools that offer partial solutions to this problem are Mosilab and Sol. 
• Mosilab slightly generalizes the Modelica language.  It makes use of 

dynamic model switching (similar to Modelica’s approach to dynamic 
state selection) to deal with variable structure models.  Unfortunately, 
the approach doesn’t scale well as 10 dynamic structure switches call 
for 1024 different models to be maintained with potentially 523,776 
possible transitions between them (!) 

• Sol, developed by Dirk Zimmer, a former Ph.D. student of mine, in his 
Ph.D. dissertation, proposes dynamic causalization instead.  When a 
structure change occurs, the model is reconfigured on the fly by 
incremental compilation.  However, Sol is only available as a 
prototype until now and doesn’t implement many of the other 
algorithms that are offered by full-fledged Modelica compilers. 
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Modeling Support: Model Activation/Deactivation 
Support of variable structure models will become more important in future 
system design environments. 
• In a complex system, it must be possible to activate models as new 

subsystems enter the system and deactivate them when they leave the 
system.  For example, in a traffic simulation of a busy intersection, it 
may be desirable to represent individual cars by physical models.  
When a car enters the intersection to be simulated, its model needs to 
be added to the overall model.  When a car leaves the intersection, its 
model needs to be removed. 

• Similarly, it should be possible to replace a complex model of a 
component by a simpler one when not much activity is occurring in 
that subsystem. 

• All of the above features require support of variable structure systems 
modeling. 
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Modeling Support: Model Pruning 
• A related feature is model pruning.  It should be possible to simulate a 

system with different levels of granularity, i.e., different degrees of 
model resolution. 

• To this end, it must be possible to simplify models in an automated 
fashion.  For example in a DC motor, it may be desirable to exclude 
the armature inductance.  If this is done dynamically in a current 
Modelica implementation (by setting L=0 at event time), the 
simulation will die with a division by zero. 

• Model pruning once again leads to variable structure models, but the 
demands on the modeling support software are more severe in this 
case, because the software should be capable of recognizing on its 
own, where and when simplifications are feasible and be able to enact 
those without human intervention. 
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Simulation Support 
While the object-oriented modeling paradigm scales well, the same 
unfortunately does not hold true for the current class of stiff system 
solvers. 
• All stiff system solvers are implicit solvers.  It can be shown that 

explicit solvers can never be stiffly stable.  They all force the solver to 
use step sizes that are small in comparison to the smallest time constant 
in the system.  Otherwise the numerical stability of the algorithm will 
be lost. 

• Traditional implicit solvers require that the (usually non-linear) set of 
model equations be solved iteratively during each step.  To this end, a 
Newton iteration is set up that spans over all model equations. 

• During each iteration step, a large linear set of equations needs to be 
solved. 

• The computational effort therefore grows cubically with the 
number of state variables in the model. 
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Simulation Support II 
• If a simulation with 50 state variables executes in a few seconds, a 

simulation with 500 state variables will take a few hours to simulate. 
• Some Modelica implementations, such as Dymola, meanwhile make 

use of sparse linear system solvers to mitigate the scaling problem. 
• While sparse linear system solvers make the simulations faster, they 

still don’t solve the problem.  Large models still simulate too slowly. 
• In order to overcome these problems, we need to get away from 

centralized schemes for simulating large systems. 
• Quantized state system (QSS) solvers offer a way out in may cases. 
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Simulation Support: QSS Solvers 
• Traditional ODE and DAE solvers make use of time slicing.  Given the 

current and past state and state derivative values, the value of the state 
one time step into the future, i.e., at time tk+1, is being estimated.  At 
that time, the new state can assume any real-valued number. 

• QSS solvers operate differently.  Rather than discretizing the time axis, 
they discretize the state axis, i.e., they operate on quantized states.  
They evaluate the next state value at the first time instant in the future 
at which the state variable differs from its current value by one 
quantum level, i.e., when xk+1 = xk ± ∆x. 

• QSS solvers are naturally asynchronous.  Each state variable carries its 
own simulation clock. 

• As QSS solvers offer dense output, each solver knows the current 
values of all other neighboring states whenever it undergoes its own 
internal transition. 
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Simulation Support: QSS Solvers II 
• Convergence and stability properties for QSS solvers have meanwhile 

been established. 
• QSS solvers even offer an advantage in this respect.  Whereas 

traditional solvers only estimate the local integration error within one 
step, QSS solvers offer an upper bound on the global simulation error 
across the entire simulation at least for linear systems. 

• When simulating a small-scale non-stiff model without discontinuities, 
QSS solvers are slightly less efficient than explicit Runge-Kutta 
solvers (there is a slightly bigger overhead).  These models don’t offer  
anything that the QSS solvers can exploit.  However, such models are 
not of much interest today, because any solver can deal with them 
efficiently, and the QSS solvers will not fare much worth than any of 
the traditional solvers. 
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Simulation Support: QSS Solvers III 
QSS solvers are more efficient than traditional solvers when facing 
discontinuities, as there is no need for iterating on (state) event times. 

Buck converter circuit 
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Simulation Support: QSS Solvers IV 

QSS solvers are more efficient than DASSL on this problem.  The heavier 
and more frequent the discontinuities occur, the better will be the relative 
performance of QSS.  On one example, QSS was about 20 times faster 
than DASSL. 
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Simulation Support: QSS Solvers V 
• A considerably more important advantage can be obtained when 

dealing with large-scale stiff systems. 
• A set of linearly implicit stiff quantized state system (LIQSS) solvers 

has been developed.  Although these are implicit solvers, they do not 
call for Newton iteration.  The reason is that in each step, there are 
only two possible outcomes: the state either increases or decreases by 
one quantum level. 

• To demonstrate the advantage, an inverter chain (a simplified model of 
a transmission line) with a fast load at the end was simulated.  Each 
logical inverter is represented by a second-order system.  Thus 500 
inverters lead to 1000 differential equations.  As the load is fast, the 
overall system is stiff, and consequently, Dymola has no choice but to 
employ a stiff system solver.  Of the different stiff system solvers 
available in Dymola, Esdirk23a turned out most efficient for this 
simulation.  Hence this is what we compared LIQSS against. 
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Simulation Support: QSS Solvers VI 
• The cubic growth of the 

computational load as a 
function of the system size 
for classical (BDF-type) 
stiff system solvers is 
clearly visible. 

• In contrast, the comput-
ational load grows only 
linearly in the number of 
differential equations for 
LIQSS solvers. 
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Simulation Support: QSS Solvers VII 

 LIQSS simulated this problem almost 1000 times faster than Dymola 
(using Esdirk23a), and 300 times faster than Matlab (using Ode15s). 

 LIQSS was even almost twice as fast as a multi-rate solver that had 
been specifically designed for this particular problem (the problem 
specification was taken from a paper introducing the multi-rate 
algorithm). 
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Simulation Support: Event Density 
 Let us assume that, in a particular model, there occur x discontinuities 

per unit of simulation time. 
 Discontinuities can be assumed to occur statistically independent of 

each other. 
 Thus, if the system is 10 times as big, we can expect roughly 10 times 

as many discontinuities per time unit. 
 Therefore, the event density grows linearly with the size of the system 

to be simulated. 
 In a classical (stiff or non-stiff) solver, the execution time grows 

quadratically in the number of events. 
 In contrast, the execution time grows only linearly in the number of 

events when using QSS solvers. 
 Once again, QSS solvers turn out to offer an advantage over classical 

solvers in this respect. 
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Simulation Support: Event Density II 
We simulated a spiking neural network with a varying number of 
neurons. 
 Each neuron is represented by a set of differential equations with 

discontinuities. 
 The larger the number of neurons, the larger the event density, i.e., the 

more discontinuities will occur per unit of simulation time. 
 The model is non-stiff.  Therefore we compared two versions of a non-

stiff third-order accurate QSS solver (QSS3 with constant and 
logarithmic quantization) with two non-stiff (explicit) classical solvers: 
a Runge-Kutta-Fehlberg (RK4/5) and a Bulirsch-Stoer (BS) solver. 
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Simulation Support: Event Density III 
 The execution time grows linearly 

with the number of neurons when 
using non-stiff QSS solvers. 

 It grows quadratically with the 
number of neurons when using 
classical non-stiff solvers such as a 
Runge-Kutta-Fehlberg (RK4/5) or a 
Bulirsch-Stoer (BS) solver. 

 For small numbers of neurons the 
execution speed is approximately the 
same in all cases.  RK4/5 and BS 
execute roughly 20% faster than QSS3 
when simulating a single neuron, but 
this is irrelevant. 
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Simulation Support: Parallelization 

 Using a QSS solver, each state variable carries its own simulation 
clock. 

 The simulations of different states execute in a naturally asynchronous 
fashion. 

 For this reason, QSS solvers lend themselves much more easily to 
parallelization (implementation on a multi-core architecture) than 
classical solvers. 

 This applies to both the stiff and the non-stiff versions, but the 
advantage becomes more pronounced in the stiff case. 

 The parallelization scales very well, even with large numbers of cores.  
Classical schemes saturate much more quickly when parallelized. 
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Simulation Support: Parallelization II 

We studied the control of electric power consumption of a number of air 
conditioner units controlling the temperature values in different rooms of a 
big building. 
 We simulated the system using QSS solvers for all state variables in the 

system. 
 The solvers were distributed over a multi-core architecture. 
 Each solver synchronizes its own simulation clock with the wall clock, 

but no attempt was made to synchronize the local simulation clocks of 
the individual solvers between each other. 

 We studied the performance of the simulation while varying the number 
of cores involved in the simulation. 
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Simulation Support: Parallelization III 

 The execution speed grows 
even a bit faster than linearly 
for up to 12 parallel processes 
(6 cores interleaved) tested. 

 The faster-than-linear speedup 
is caused by reduced overhead 
associated with the shorter 
event queue. 

 No saturation is noticeable. 
 Classical schemes tend to 

already begin to saturate when 
more than 4 parallel processes 
are involved. 
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System Design Support 
 System design support entails much more than just modeling and 

simulation support.  Series of simulation experiments need to be 
designed around a model. 

 Most Modelica environments offer some support for experimental 
design in the form of a scripting language. 

 Unfortunately, the scripting language has not (yet) been standardized 
by the Modelica Consortium, and it may be difficult to do so due to 
diverging interests among the Consortium members. 

 For this reason, scripting support varies a lot from one environment to 
another. 

 With respect to modeling and simulation support, Dymola is the 
strongest competitor on the market by a good margin.  With respect to 
scripting support it is almost the weakest.  Its scripting language is 
poor by design and even more poorly documented. 
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System Design Support II 
 Scripting support is important and will gain importance as we proceed 

to modeling and simulating ever larger systems. 
 We will need a stable scripting platform before system design efforts 

can begin in earnest. 
 For this reason, it is important that  the Modelica Consortium tackles 

this problem, even if the negotiations should turn out to be difficult. 
 Once a stable scripting platform is available, many players will be 

available to develop system design tools on the shoulders of that 
platform. 

 This is comparable to the efforts that went into the development of the 
Modelica Standard Library (MSL).  These efforts could not begin until 
the Modelica language had been standardized.  In the meantime, 
hundreds if not thousands of man years of design and development 
work have gone into making the MSL what it has become. 
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Conclusions 
Size matters! 
 Small-scale systems (containing a few state variables) can be modeled 

and simulated using any tool/algorithm available. 
 Medium-scale systems (characterized by a few dozen state variables) 

require heavy modeling support for organizing the models.  On the 
simulation side, they require a robust stiff system solver, such as 
DASSL. 

 Large-scale models (defined by several hundreds or thousands of state 
variables) require decentralized simulation tools, such as QSS solvers. 

 Support for variable structure system modeling as well as decent 
scripting support would already have been useful at the level of 
medium-scale system modeling and simulation, but are still lacking.  
At the level of large-scale system modeling, these will become even 
more important. 
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