Advances in e-Science and e-Research: e-Infrastructures for Modelling and Simulation

Simon J E Taylor

Editor-in-Chief, Journal of Simulation

Chair, SISO CSPI PDG

Head, ICT Innovation Group

Department of Information Systems and Computing

Brunel University

West London, UK www.brunel.ac.uk/~csstsjt, simon.taylor@brunel.ac.uk

WEST LONDON

Advances in e-Science and e-Research: Cyberinfrastructures for Modelling and Simulation

Simon J E Taylor

Editor-in-Chief, Journal of Simulation

Chair, SISO CSPI PDG

Head, ICT Innovation Group

Department of Information Systems and Computing

Brunel University

West London, UK www.brunel.ac.uk/~csstsjt, simon.taylor@brunel.ac.uk

WEST LONDON

Presentation Key Question

- Significant investment in e-Infrastructures has brought about a step change in research in areas such as physics, biology and medicine
- What benefits can e-Infrastructure technological advancements bring to Modelling and Simulation?



Overview

- ICT Innovation Group
- Modelling and Simulation (M&S)
 - COTS Simulation Packages (CSPs)
- e-Infrastructures
- e-Infrastructures for M&S
- Conclusions

ICT Innovation Group, Brunel University

- Technology & knowledge transfer of advanced computing techniques into academia and industry
 - Research, consulting, training and teaching
 - Five academic staff, 3 PDRA + external collaborations
 - 9 PhD Students
 - > £1 million funding
 - Journal of Simulation & ORS Simulation Workshop
- Main areas
 - Modelling and Simulation (Industry & Academia)
 - e-Infrastructure Studies (Europe, Africa)
 - Medical Device Industry Innovation
 - Synthetic and Systems Biology

Some outputs

UNIVERSITY WEST LONDON

	EPSRC Network GROUPSIM					
Distributed Simulation	 CSPI Forum, CSPI PDG 					
	 IMSS Project (NTU PDCC, Singapore and others) 					
Grid/Cloud Computing	 WINGRID/GridAlliance 					
	 Industrial projects (Ford, ING, Saker Solutions, 					
	Simul8 Corp, WSP, etc.)					
Research Infrastructure	BELIEF II					
	 ERINA4Africa 					
	 el4Africa 					
M&S	 MAP-Guide 					
	 Cumberland Initiative 					
	 UK ORS Simulation Study Group, ACM SIGSIM 					
	 MATCH Tools and Training 					
Other	 Centre for Synthetic and Systems Biology 					
	 Campus Grid @ Brunel 					
Brunel	Story Start					

Overview

- ICT Innovation Group
- Modelling and Simulation (M&S)
 - COTS Simulation Packages (CSPs)
- e-Infrastructures
- e-Infrastructures for M&S
- Conclusions

Modelling & Simulation

- Commerical-off-the-shelf Simulation Packages (CSPs)
 - Arena, AnyLogic, Flexsim, Simio, Simul8, Witness, etc.
 - Widely used to investigate process-based systems in commerce, health, manufacturing, logistics, transportation
 - Discrete-event simulation (some ABS and/or SD)
 - Visual Interactive Modelling (drag and drop)
 - Animated (2D/3D)
 - Methodological support
 - Users tend to be Operational Researchers/Management Scientists

Compre roue [average and random]	
le Edit <u>C</u> lock <u>T</u> rials <u>R</u> esults <u>O</u> bjects <u>G</u> raphics <u>P</u> rofessional Tool <u>s</u> <u>Wi</u> ndow <u>H</u> elp	
🚰 🗔 📇 🦻 🦧 🖻 🏗 🖁 100% 🔽 🕼 🛛 🔿 🗸 🖸 🖉 🖾 🖾 🐼 🔞 Getting Started Mode 🗸	
Speed: \leq \square \Rightarrow \Rightarrow $=$ \Rightarrow	
10 Werk Center 1 0 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	
	>
ucational Site License	

Screenshot of Simul8 (http://www.simul8.com/)

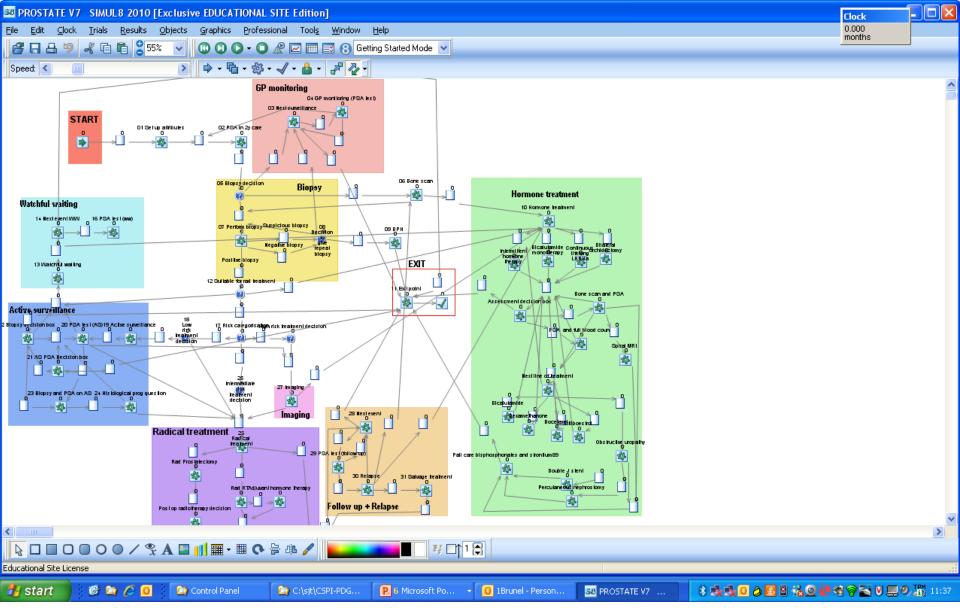
0 1Brunel - Person...

58 SIMUL8 2010 [E...

🛛 🔁 6 Microsoft Po...

🔄 C:\sjt\CSPI-PDG...

🕑 😂 💋 🧕

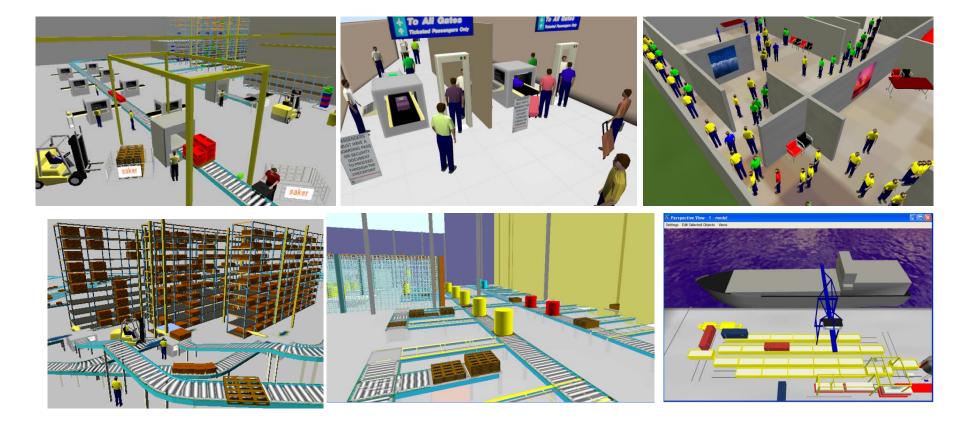

Control Panel

🛃 start

SIMUL8 2010 [Exclusive EDUCATIONAL SITE Edition]

🚯 🔥 🖸 🖉 🖉 🍓 🥹 🖓 🗟 🔍 💻 🤊 🐰 11:39

MAP-Guide Project: Prostate Cancer Clinical Pathway v7 in Simul8



Screenshots from AnyLogic (http://www.xjtek.com/)

Screenshots from Flexsim courtesy of Saker Solutions (http://www.sakersolutions.com/)

Overview

- ICT Innovation Group
- Modelling and Simulation (M&S)
 - COTS Simulation Packages (CSPs)
- e-Infrastructures
- e-Infrastructures for M&S
- Conclusions

e-Infrastructures Definition

An *e-Infrastructure* is

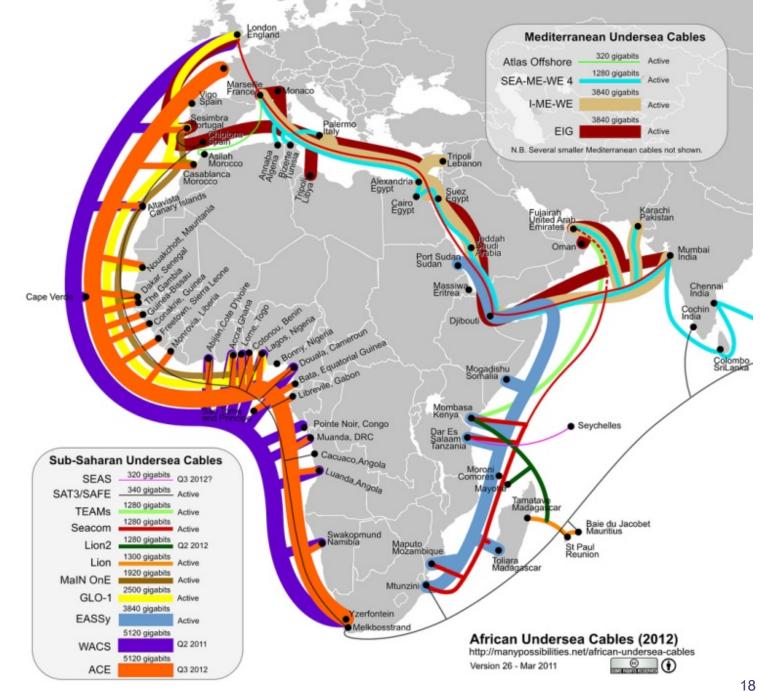
- an environment where resources—hardware, software, and content—are readily accessible and can be easily shared.
- It integrates networks, grids, middleware, computational resources, experimental workbenches, data repositories, tools and instruments, and operational support for virtual organizations.
- Supporting worldwide advances in physics (e.g. physics (LHC Grid), biology (biomed) and medicine (Healthgrid))

e-Infrastructures

Global Virtual Research Communities

e-Infrastructure-based Applications

support for scientific	e.g. Scientific Digital Repository Access Remote instrumentation Collaboration Support
------------------------	---


Distributed & High Performance Computing (EGI, TeraGrid, PRACE, etc.)

High Performance Network Infrastructure (GEANT, TEIN, ALICE, etc.)

Brunel UNIVERSITY WEST LONDON

×}

Key Issues (UK)

- Network
 - The supra-exponential growth in data and the need to share this data for effective collaboration. Securing and expanding this is a priority.
- Software People and Skills
 - Robust and usable software at every level of the e-Infrastructure supported by skilled software engineers and developers.
- Compute
 - On-going national need for robust computing infrastructure to facilitate the ongoing need for to run simulations. Cloud (e.g. Amazon EC2) emerging.
- Data
 - Expanding data deluge. (Need for curation, management and certification).

e-Infrastructure Advisory Group (2011), Report of the e-Infrastructure Advisory Group, Research Councils UK

Overview

- ICT Innovation Group
- Modelling and Simulation (M&S)
 - COTS Simulation Packages (CSPs)
- e-Infrastructures
- e-Infrastructures for M&S
- Conclusions

e-Infrastructure Involvement/Influence

- Bringing Europe's eLectronic Infrastructures to Expanding Frontiers (BELIEF 1 & 2) (Europe, Latin America & India)
- Organisation of e-Infrastructure Concertation events (Europe)
- Exploiting Research Infrastructures potential for Boosting Research and Innovation in Africa (ERINA4Africa) (Europe & Africa)
- el4Africa (Europe & Africa)
- European Desktop Grid Initiative Subcontract

e-Infrastructures for M&S

- An *e-Infrastructure for M&S* (in the context of this talk) is
 - an environment where resources COTS simulation packages and ancillary software (e.g. Excel), models, data, etc.
 — are readily accessible and can be easily shared and/or interoperated
 - It integrates networks, grids, middleware, computational resources, data repositories, and software tools within (virtual) organizational boundaries
- What could be the specific benefits?

e-Infrastructures for M&S – Benefits?

- Collaborative Support
 - Save project time and costs by remote collaboration
- High Speed Experimentation
 - Reduce experimentation time and/or increase depth of analysis
- Simulation Interoperability/Distributed Simulation
 - Reduce experimentation time and/or increased analysis, facilitate distributed model development, overcome large distributed model problems
- Data (Artefact) Management
 - Project cost reduction by better management of all simulation project artefacts, integration with other projects, cheaper model development through reuse

<u>e-Infrastructures for M&S</u> Collaborative Support

- Groupware
- Plenty of off-the-shelf software (Messenger, Skype, GotoMeeting, etc.)
- Application sharing
- On-line training opportunities
- Cannot replace face-to-face meetings but can certainly reduce model development time (less time travelling!)
- BUT!
 - Some practitioners unaware that groupware exists!

<u>e-Infrastructures for M&S</u> High Speed Experimentation

- COTS Simulation Packages
 - Nearly all run under Windows
 - Must be installed
 - Access to local installed data sources (databases, spreadsheets, etc.)
 - Are licensed (typically by copy)
 - Do not have direct Grid/Cloud Computing support
 - Model runtimes seconds to hours

<u>e-Infrastructures for M&S</u> High Speed Experimentation

- Grid and/or Cloud Computing
 - Must be easy to implement and support
 - M&S is costly! Must be a clear business case for Grid investment
 - Users will have OR/MS skill set must be deployed in their 'world' (experimentation managers)
 - Institutional IT management plays a key role and must be on board

Desktop Grid Computing and M&S

- Ford
 - WINGRID/WITNESS
- ING
 - WINGRID/EXCEL
- GRIDALLIANCE
 - WINGRID/SIMUL8
- Systems Biology
 - CONDOR/SIMAP
 - SZDG/SIMAP
- Saker Solutions
 - SAKERGRID/FLEXSIM
- SIMUL8
 - SZDG/SIMUL8 & EXCEL

2008 + Literature

2008

Mustafee and Taylor (2008) *SW '08*, Mustafee and Taylor (2008) *WSC 2008*

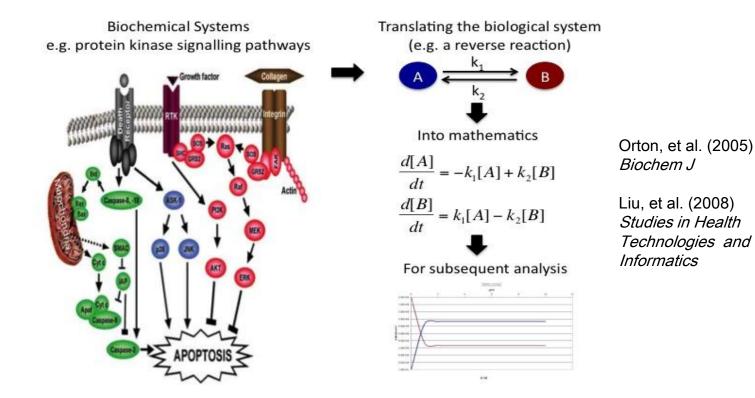
2009

Wang, et al. (2009) *AHM 2009*, Mustafee and Taylor (2009) *Concurrency and Computation: Practice and Experience*, Mustafee and Taylor (2009) *Grid Technology for Maximizing Collaborative Decision Management and Support*

2010

Taylor, et al. (2010) *WSC 2010*, Mustafee and Taylor (2010) *WSC 2010*, Mustafee and Taylor (2010) *SW '10*, Wood, C., et al. (2010) *SW '10*

2011 Kite, et al. (2011) *WSC 2011*


2012 Taylor, et al. (2023) *SW'12*

教

Systems Biology

WEST LONDON

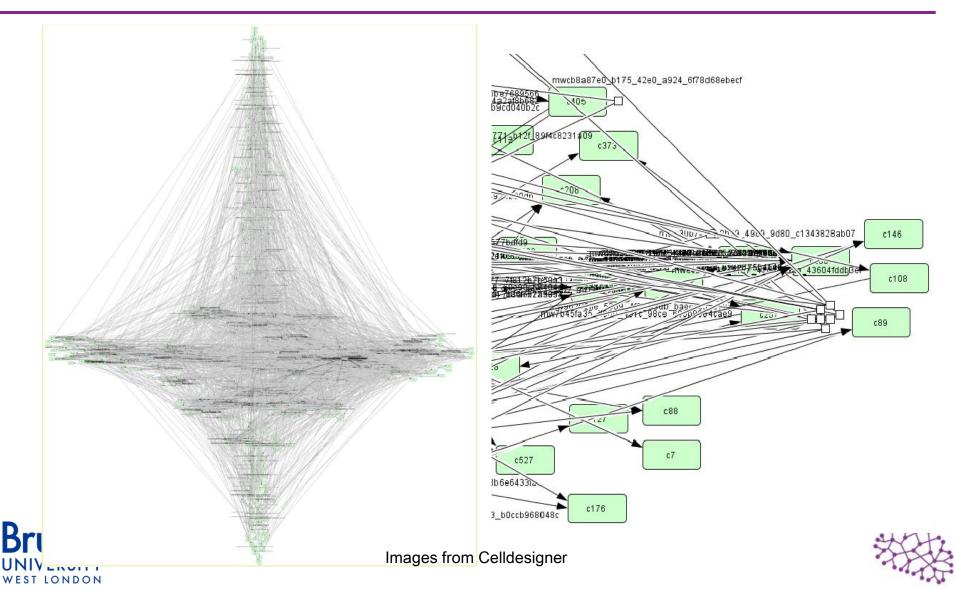
SIMAP Systems Biology Simulation Tool (Glasgow/Brunel) Uses SBMLODEsolver (SOSLib) to compute the concentrations of species over time.

Models are specified by Systems Biology Mark up Language (SBML)

<annotation>plasma membrane</annotation>

</species>

</listOfSpecies>


- distOfParameters>

```
<parameter id="mw8b4a0e01_6b31_4b99_93ac_0a1df7ad377b" name="kd1" value="0.0033" />
<parameter id="mw10be3c14_8b28_4a67_b3e6_5b2987d003d0" name="k1c" value="800" />
<parameter id="mw817a95bd_e5c8_4a5c_b088_01810dafd40c" name="kd1c" value="1" />
<parameter id="mw611b22c9_7afd_4364_98d7_fb6ed1ce06b8" name="kd1d" value="0.1" />
```


MAPK model (732 species, ~ 244 parameters)

Grid Computing & Systems Biology

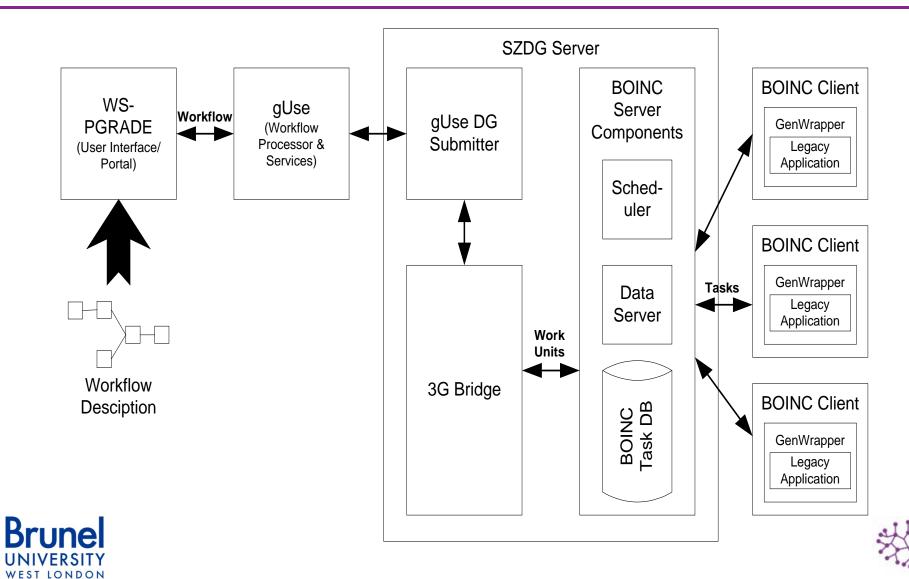
- Two kinds of analysis that can benefit from grid computing
 - Parameter scanning and Parameter estimation
- Parameter scanning changes kinetic rates and creating new models the number of models can grow very fast
- 'Typical' model runs at around 20-30s (Contemporary PC)
 - 2 parameters over 10 values @ = ~11 hours
 - 3 parameters over 10 values @ = ~3 months

Desktop Grid Architecture

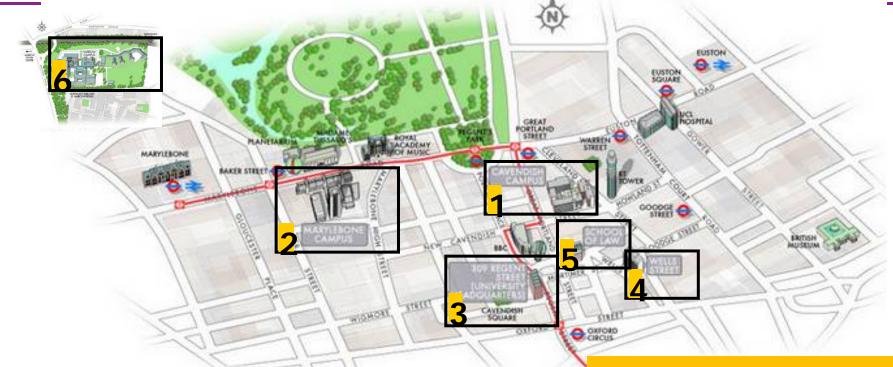
- Previous studies on CONDOR
 - Wang, et al. (2009) *AHM 2009*
- Recent studies on <u>SZTAKI Desktop Grid (SZDG)</u>
 - Based on volunteer computing adaptation based on Berkley Open Infrastructure for Network Computing (BOINC)
 - EDGeS & EDGI projects
 - www.edges-project.eu, www.edgi-project.eu
 - Any application can run, does not use credits
 - Westminster Local Desktop Grid (WLDG)
 - An implementation of SZDG
 - 1500 PCs, four different sites

IOND

BOINC

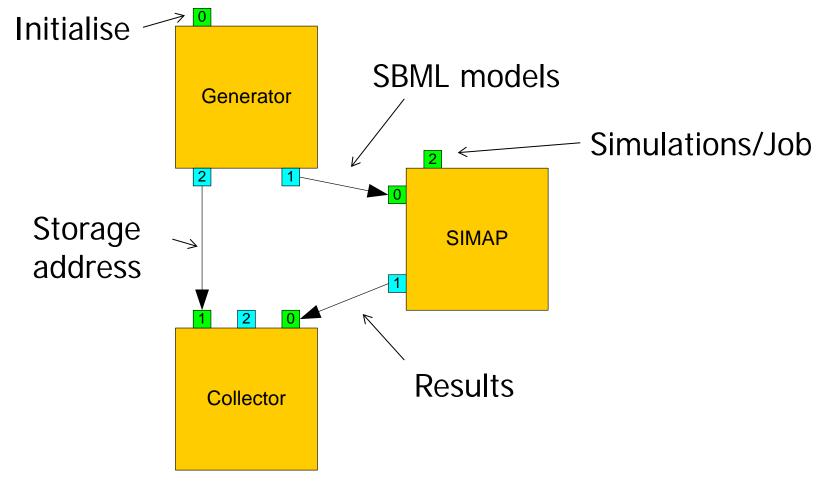

Projects	Users	last day	Hosts	last day	Teams	last day	Countries	last day	Total credit	last day
BOINC combined	2,080,715	+518	5,894,410	+1,903	89,775	+8	272	0	362,133,002,359	+921,651,669
MilkyWay@home	82,959	+149	159,949	+ 269	2,321	+1	188	+1	61,252,351,250	+218,560,609
DNETC@HOME	3,503	+14	9,262	+45	424	+3	105	0	30,008,025,659	+173,066,153
Collatz Conjecture	15,511	+39	33,842	+80	919	+1	133	0	41,764,474,956	+141,452,933
SETI@Home	1,137,030	+117	2,762,616	+ 297	58,341	+2	234	0	86,481,304,588	+20,396,572
World Community Grid	319,238	+130	1,085,581	+669	18,463	+5	219	0	33,869,775,598	+47,131,133
AQUA@home	20,158	+41	38,150	+79	879	+1	145	0	10,656,666,052	+40,541,195
Einstein@Home	283,397	+89	1,932,363	+992	9,594	0	216	0	25,892,830,400	+34,183,074
PrimeGrid	36,018	+53	111,997	+123	1,874	+4	174	0	6,122,272,891	+154,725,985
GPUGRID	10,917	+15	19,318	+24	779	0	114	0	13,427,792,182	+30,354,391
Climate Prediction	239,960	+95	475,773	+206	7,253	+1	217	0	13,979,786,946	+17,161,536
Rosetta@Home	305,938	+91	948,159	+ 292	9,088	0	222	0	12,438,794,431	+13,422,723
QMC@Home	44,280	+10	109,359	+42	2,018	0	174	0	3,460,086,620	+4,149,686
Docking@Home	21,030	+20	54,041	+46	793	0	128	0	1,427,858,985	+3,642,907
FreeHAL	9,853	+21	37,866	+54	561	0	116	0	2,262,737,192	+3,883,096
ABC@home	40,346	+48	91,351	+62	1,439	-1	173	0	2,763,248,315	+2,107,687

- 1 Gigaflop machine running for a day ~ 200 credits
- = => BOINC combined ~ 4.5 Million Gigaflops/day

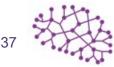


SZTAKI Desktop Grid (SZDG)

University of Westminster Local DG Over 1500 Windows PCs from 6 different campuses


Lifecycle of a DG node:

- 1. PCs basically used by students/staff
- 2. If unused, switch to Desktop Grid mode
- 3. No more work from DG server -> shutdown (green solution)

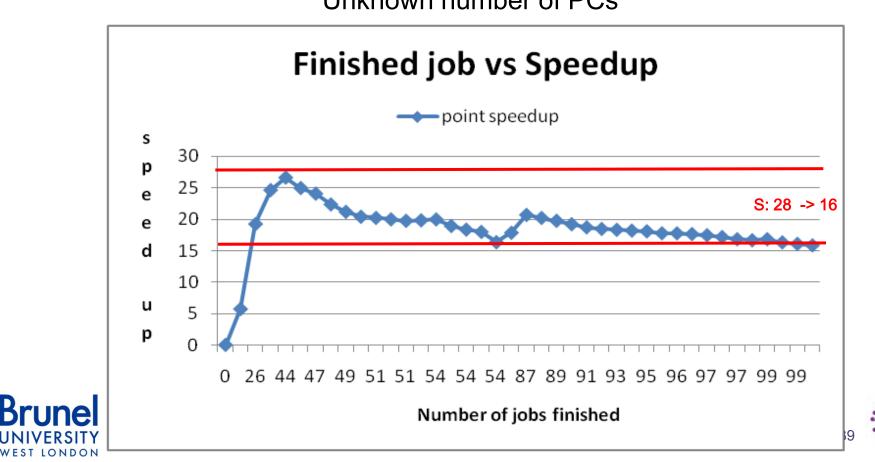

- 1 New Cavendish St 576 nodes 2 Marylebone 559 nodes 3 Regent Street 395 nodes 4 Wells Street 31 nodes 5 Little Titchfield St 66 nodes
- 254 nodes 6 Harrow Campus

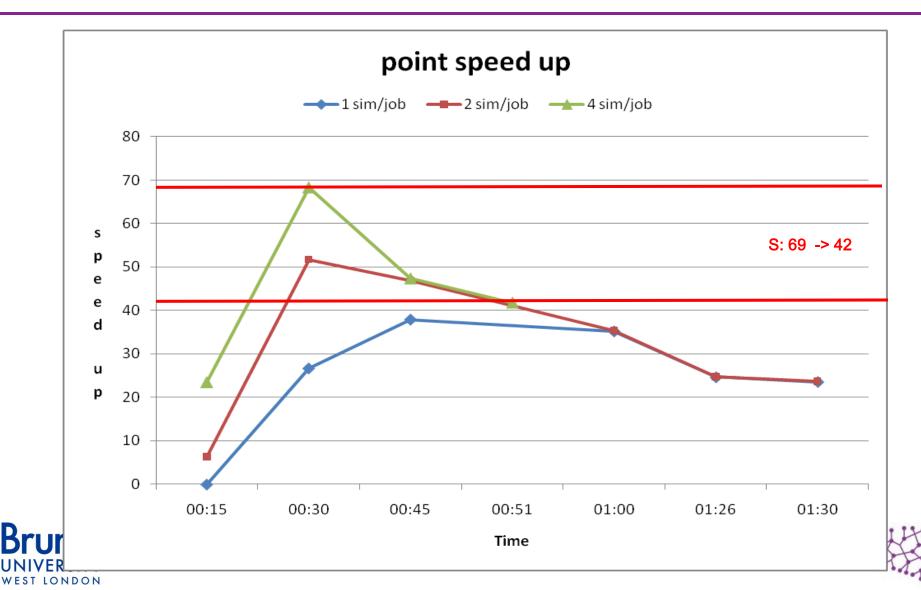
Courtesy of Centre for Parallel Computing, University of Westminster

WS-PGRADE Portal Workflow

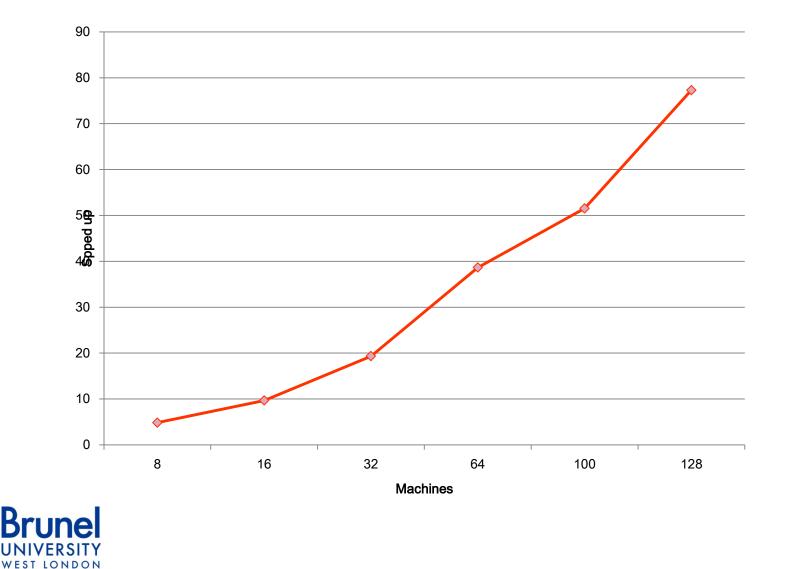
Job (work unit) Description

- Inputs
 - SBML model
 - Script file
 - SBMLOdesolver
 - Size: ~2 MB.
- Output
 - Zip file contains results for all jobs
 - Size: ~1.5 MB.

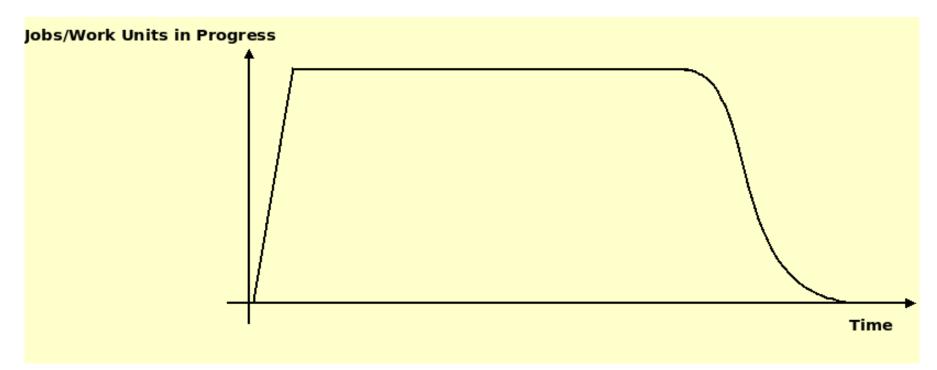



Speedup vs Job Completion

100 jobs, 100 simulations per job


30 min to complete ~50% of jobs, 2h 30 min to complete other ~50% Unknown number of PCs

Speedup vs Job Completion


CONDOR Speedup (8 sims/job)

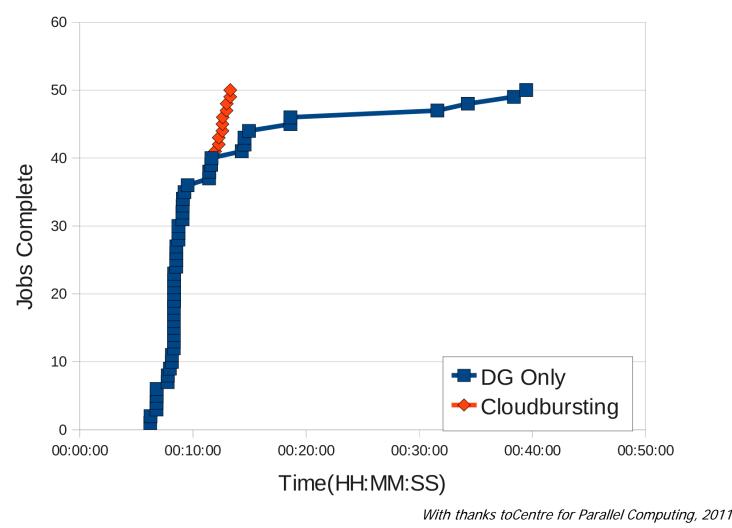
X

Volunteer Computing

Tail Problem

Cloudbursting

- Augment the DG infrastructure with virtual cloud resources
- Design a cloud resource scheduler that tackles the tail problem



Cloudbursting: Indicative Results

WEST LONDON

50 Autodock Jobs Tail Def: 40%, Timeout 25min

Summary (DG/Systems Biology)

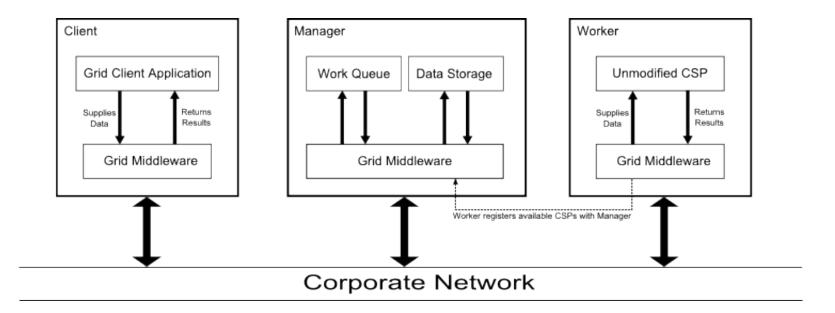
- Some success but limited variable speedup
- More experimentation
 - Cloudbursting
- Possible standardised approach
 - Several SZDG implementations/applications can run on any SZDG platform
 - Links to EGI systems via 3G Bridge
- Portal/job submission technology
 - Developing G-Use Portal for SIMAP

SAKERGRID

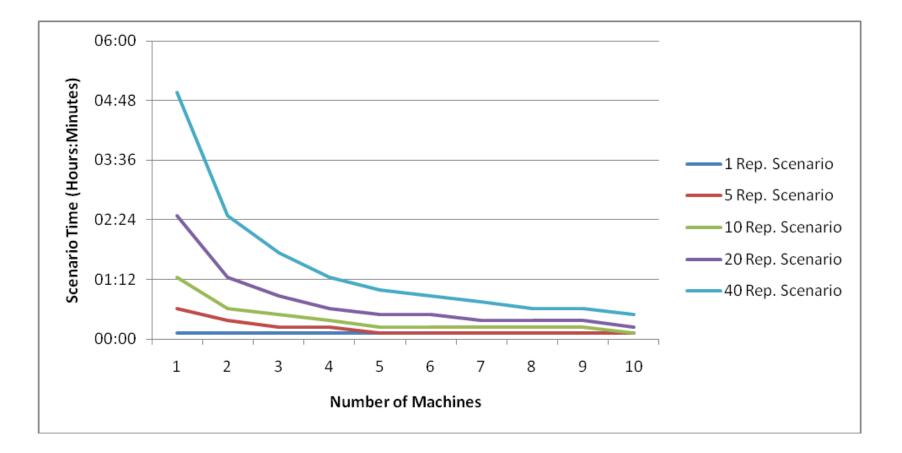
- Saker Solutions identified a need to radically reduce the time taken to produce results from a simulation project.
- Joint research Project with Brunel University during 2007-9
- Culminated in the development of SAKERGRID
- 1st Large Scale Client Implementation at Sellafield Ltd (BNFL) 2010

Taylor, et al. (2010) *WSC 2010*, Wood, et al. (2010) *SW '10*, Kite, et al. (2011) *WSC 2011*

Development Issues


- Testing existing approaches against possible client sites led to development of bespoke Grid implementation
 - Potential wide range of implementation challenges
 - Develop well-understood, in-house technology
- CSP
 - Initially Flexsim
- Integration with Saker's Scenario Manager
 - Manager/'Portal'
- Assumes
 - CSP/Models/data available locally at worker
 - Client has multiple licences

SAKERGRID Architecture



Conventional Speedup



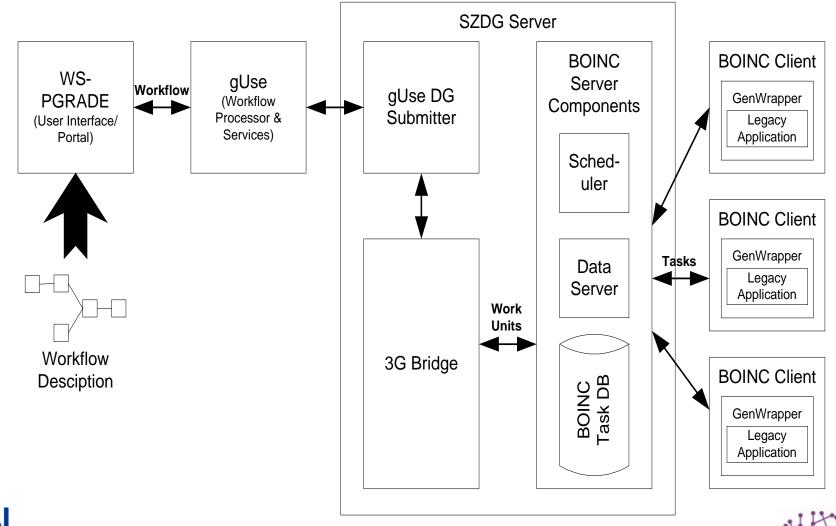
sakergrid

Sellafield Ltd UK & Flexsim

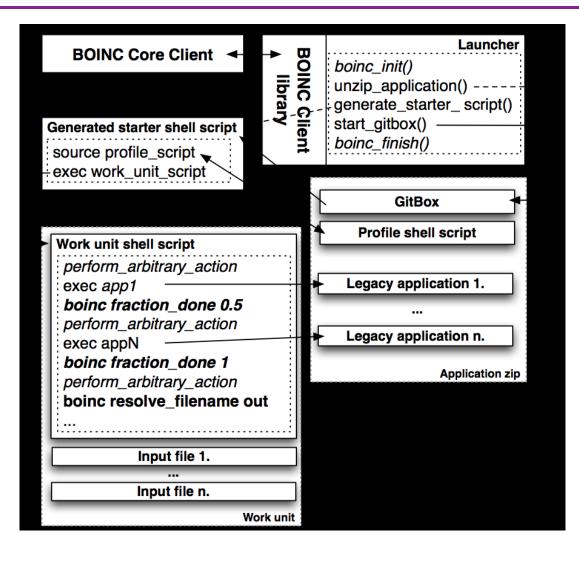
- Sellafield Ltd is responsible for safely delivering decommissioning, reprocessing, nuclear waste management and fuel manufacturing activities
- Sellafield Ltd have a network with 22 Flexsim Licences based over 3 sites
- There are up to a dozen client machines that need to submit jobs to the manager
- Workers each hold a Flexsim Licence.
 - They may sit on the same machine as the client.
 - They may sit on a series of dedicated multicore servers running VMware to host multiple Virtual Machine instances.
- Models have runtimes of between 10 mins and 12 hours per replication
- Models are all Flexsim models but using different versions of the software and different libraries

Sellafield Ltd & SAKERGRID

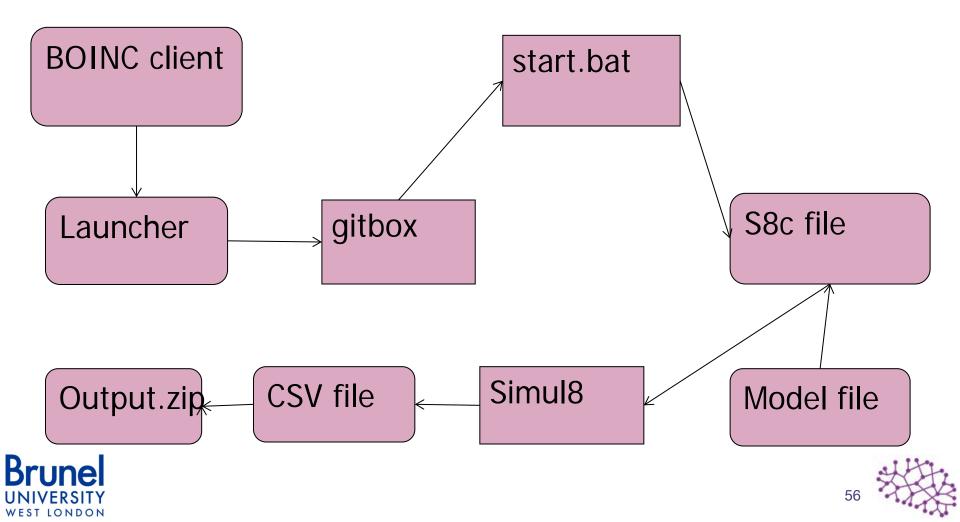
- User conflict
 - Running Grid in the background is not always desirable. Some models have a requirement for 2GB of Memory
- Network infrastructure
 - Restricted Shared folders on machines
- Inter-Site networking
 - Frequent disconnects, sometimes as frequent as every 30 mins.
- Security
 - Cannot leave a model and results together on a machine delete when finished
- SAKERGRID successfully modified to account for these issues


Summary (SAKERGRID)

 DG successfully built with simulation consultant and deployed at client site



SZDG/Simul8


GenWrapper

GenWrapper (simul8)

Results


Simul8 version

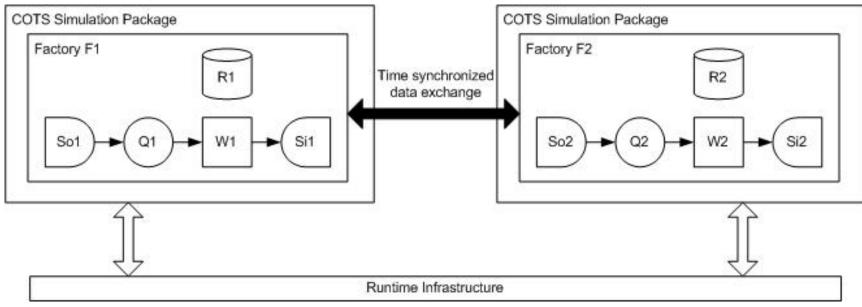
- Emergency Room simulation (thanks Dr Vince Knight (Cardiff)!)
- Each run 50 seconds
- 3 runs per job

Simul8 & Excel version (English!)

- National Blood Service model
- Each run 25 seconds
- 4 runs per job
- In both cases speedup over 8 machines was around 5
- On-going analysis

<u>e-Infrastructures for M&S</u> High Speed Experimentation

- COTS Simulation Packages (and their ancillary software) can be supported
 - Small runtimes supported
 - License issues
 - Partnership with Vendor vital
 - SZDG Grid probably the best deployment architecture in a "standard" environment (simple to deploy and maintain)
 - Still need to integrate with an Experimentation Manager of some kind



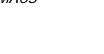
e-Infrastructures for M&S

Simulation Interoperability/Distributed Simulation

Interoperability between (two +) CSPs during a simulation run

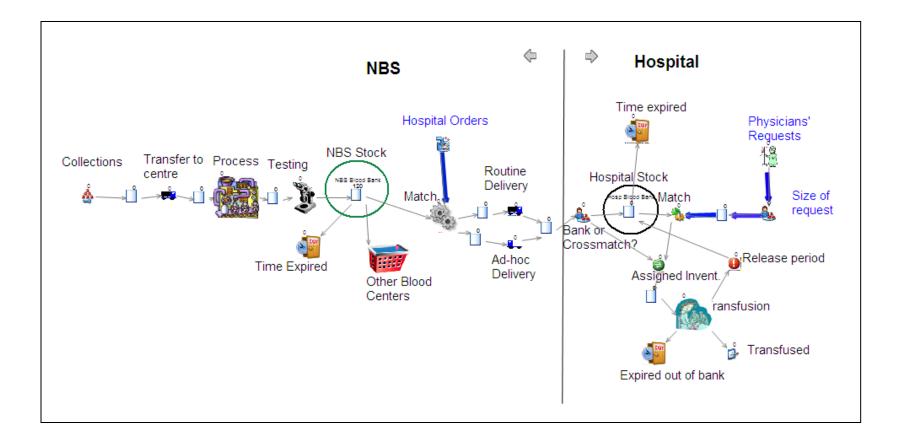
e-Infrastructures for M&S

Simulation Interoperability/Distributed Simulation

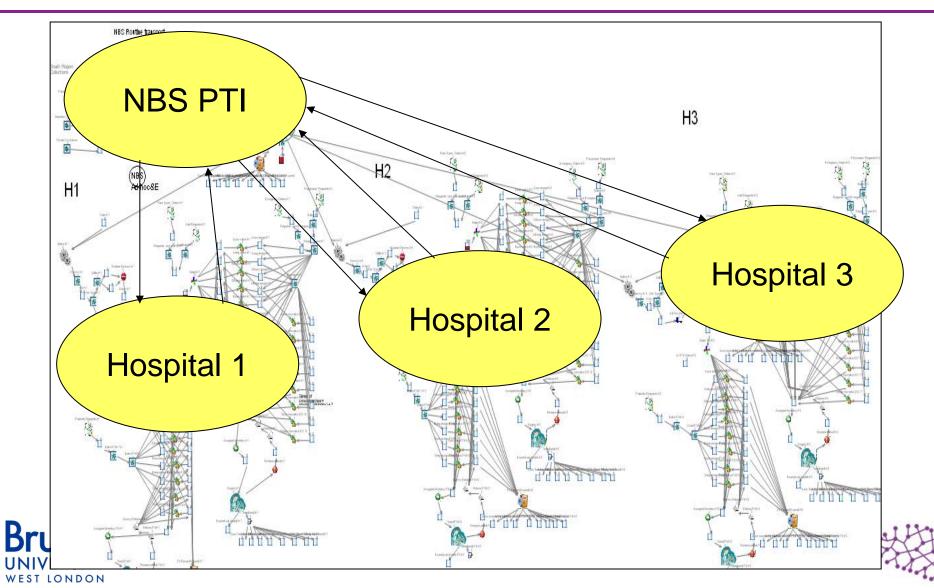

Motivations

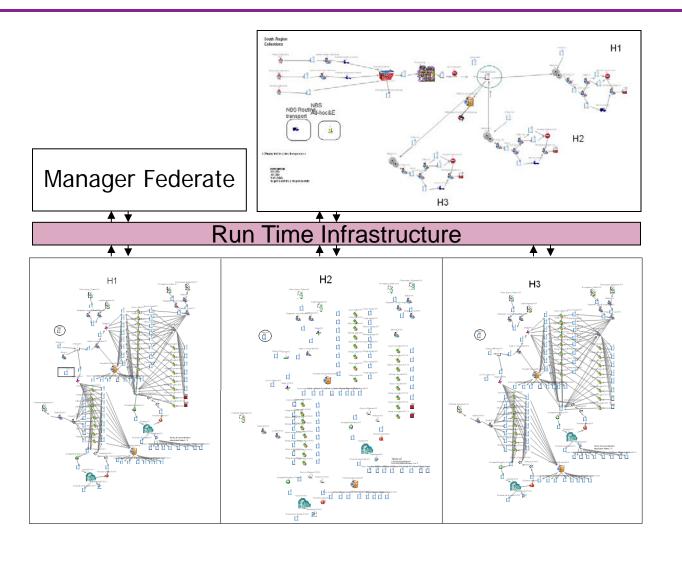
<u>Surveys</u>

Ryde and Taylor (2007) *WSC 2007* Strassburger, et al. (2009) *WSC 2009* Boer, et al. (2010) *Journal of Simulation*


- Privacy
- Data transfer/access problems
- Model composability/update problems
- Execution Time
- Illustrative case
 - Distributed simulation of blood supply chain
 - Korina Katsaliaki (UoT), Navonil Mustafee (Brunel), Sally Brailsford (Southampton), Mark Elder (Simul8)

Katsaliaki, et al. (2009) *JORS*, Mustafee, et al. (2009) *SIMULATION* Taylor, et al. (2013) *ACM TOMACS*


Simplified National Blood Service Model



Supply Chain of Blood

Distributed Model

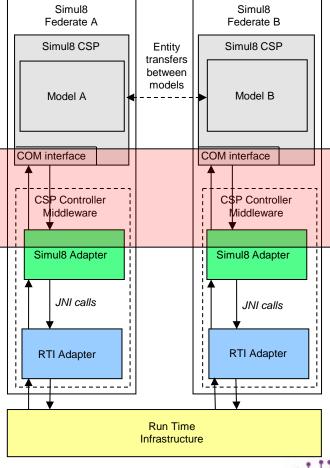
CSP Controller Architecture – CSP Interfaces

- The CSP Controller Middleware utilizes the COM interface to access the Simul8 simulation engine
- COM interfaces used

MySimul8 As SIMUL8.S8Simulation

MySimul8.Open

MySimul8.RunSim


MySimul8.SimulationTime

MySimul8.ExecVL

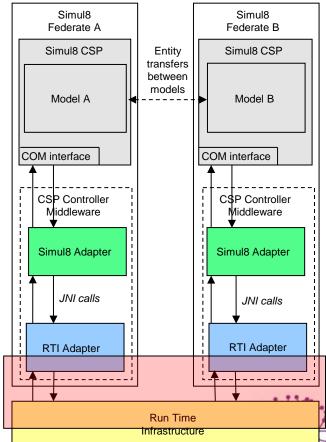
MySimul8.StopSim

MySimul8.Quit

WEST LONDON

CSP Controller Architecture – HLA Interfaces

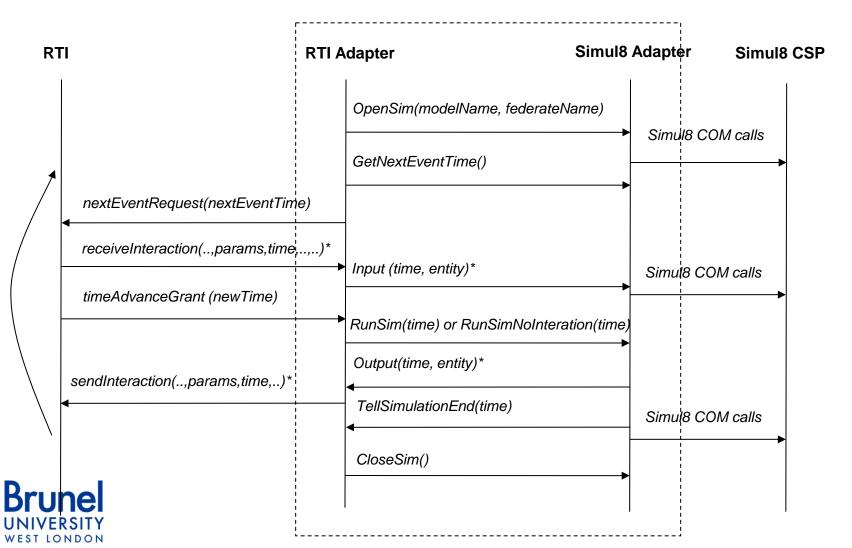
The HLA interface specification organises the communication between federates and the RTI into six different service groups


For our Type I IRM solution with Simul8 and the RTI we require HLAdefined services defined under the groups:

Federation Management: RTI Calls for creation and deletion of federation; joining and resigning of federates from the federation; and creation and realization of synchronization points

Declaration Management: Calls pertaining to publication and subscription of interactions

Object Management: Calls that relate to sending and receiving interactions


Time Management: RTI calls required to enable time constraint and time regulation and also to advance the federate simulation clock.

CSP Controller Middleware Protocol

CSP Controller Middleware

A Standards-based Approach

- COTS Simulation Package Interoperability Product Development Group under the Simulation Interoperability Standards Organization (SISO CSPI PDG)
- Roots in UK EPSRC GROUPSIM Project (2000-2004)
- Formal activity began June 2002
 - (HLA-)CSPIF (August 2002)
 - 16 international meetings, 80+ members
 - SISO Virtual Study Group (Jan 2003)
 - Final report submitted to SISO (Sept 2003)
 - Product Nomination submitted (June 2004)
 - PDG status awarded Oct 2004
 - Now transitioning to SISO CSPI PSG (www.sisostds.org)

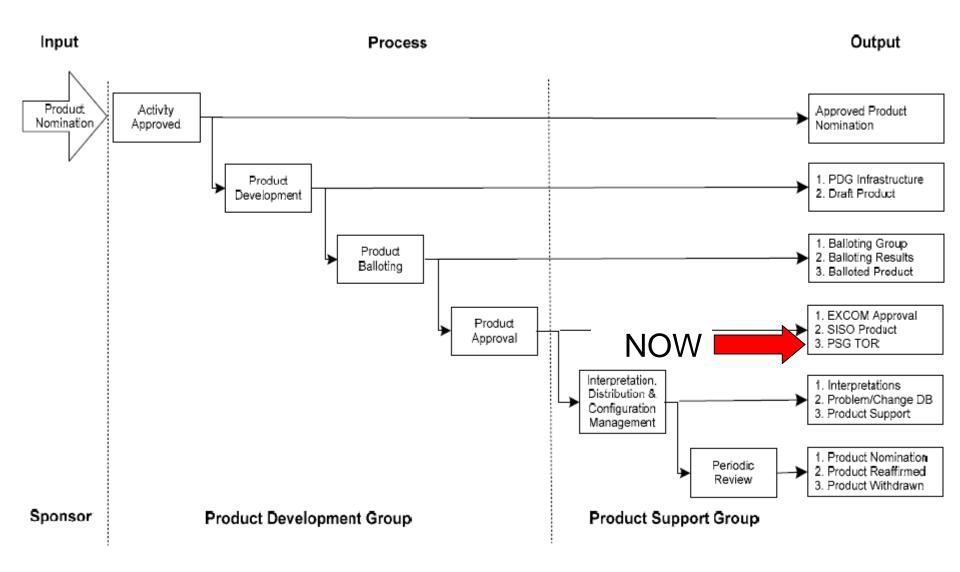


Figure 1 - SISO Balloted Product Development and Support Process (BPDSP)

SISO CSPI PDG

Aim

- to develop standardised approaches to COTS Simulation Package Interoperability
- First major outcome
 - Standard for COTS Simulation Package Interoperability Reference Models (SISO-STD-006-2010) (*Model-level interoperability*)

2008 + Literature

2008

Taylor, et al. (2008a) *WSC 2008*, Taylor, et al. (2008b) *WSC* 2008, Mustafee and Taylor (2008a) *SW '08*, Mustafee and Taylor (2008b) *SW '08*

2009

Katsaliaki, et al. (2009) *Journal of the Operational Research Society*, Mustafee, et al. (2009) *SIMULATION*, Mustafee, et al. (2009) *Handbook of Research on Advances in Health Informatics and Electronic Healthcare Applications,* Taylor, S.J.E., et al. (2009) *WSC 2009*

2010

Taylor, S.J.E. et al. (2010) *WSC 2010*, Mustafee and Taylor (2010) *SW '10*, Taylor and Mustafee (2010) *Wiley Encyclopedia of Operations Research and Management Science*

2011

Taylor, et al. (2011) WSC 2011

UN 2013

UNIVERS Taylor, et al. (2013) ACM TOMACS

Interoperability Reference Models

Current list

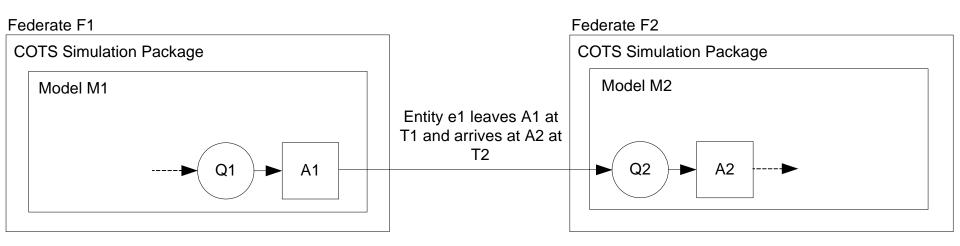
WEST LONDON

- Type A: Entity Transfer (3 IRMs)
- Type B: Shared Resource
- Type C: Shared Event
- Type D: Shared Data Structure

Previously appeared as

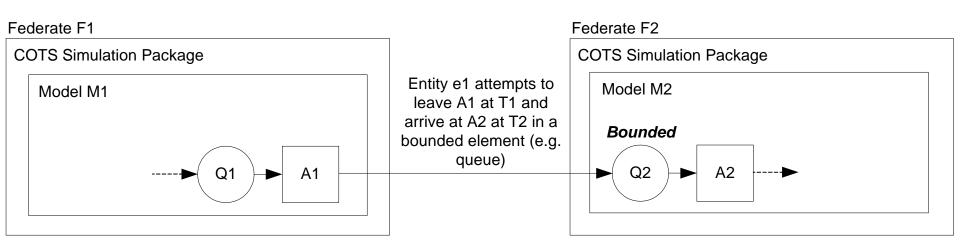
- Type I: Asynchronous Entity Passing
- Type II: Synchronous Entity Passing (Bounded Buffer)
- Type III: Shared Resources
- Type IV: Shared Events
- Type V: Shared Data Structures
- Type VI: Shared Conveyor

Standard for COTS Simulation Package Interoperability Reference Models (SISO-STD-006-2010)


Interoperability Reference Models

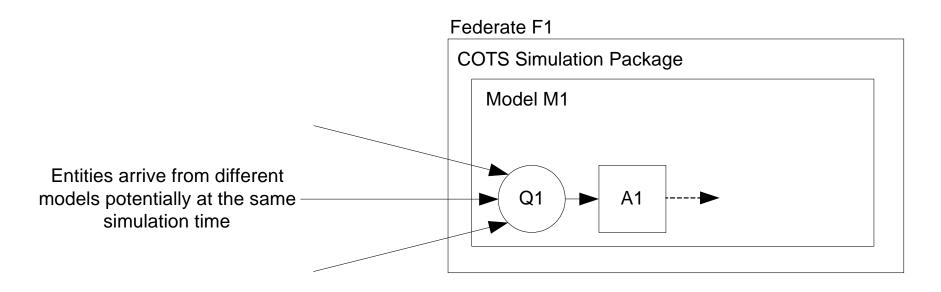
- Definition:
 - An interoperability problem *type* is meant to capture a general class of interoperability problem, while an *IRM* is meant to capture a specific problem within that class at the model level
- The purpose of an IRM is therefore:
 - to clearly *identify* the model/CSP interoperability capabilities of an existing distributed simulation
 - e.g. The distributed supply chain simulation is compliant with IRMs Type A.1, A.2 and B.1
 - to clearly *specify* the model/CSP interoperability requirements of a *proposed* distributed simulation
 - e.g. The distributed hospital simulation must be compliant with IRMs Type A.1 and C.1

IRM Type A.1 General Entity Transfer



T1 =< T2 or T1<T2?

IRM Type A.2 Bounded Receiving Element



Must account for blocking behaviour

IRM Type A.3 Multiple Input Prioritization

The priority rules must be specified and be strictly observed

Blood supply chain...

- Orders/Blood units are only exchanged
- In terms of interoperability...
 - Distributed NBS model has the functionality of
 IRM A.1, T1>=T2 (Entity Transfer)
 - Currently does not have the functionality of
 - IRM A.3 (Ordered Queues)
 - Does not require the functionality of
 - IRM A.2 (Bounded buffer)
- Specification then produced in IRL and a FOM and agreed by all parties before implementation

Some other examples

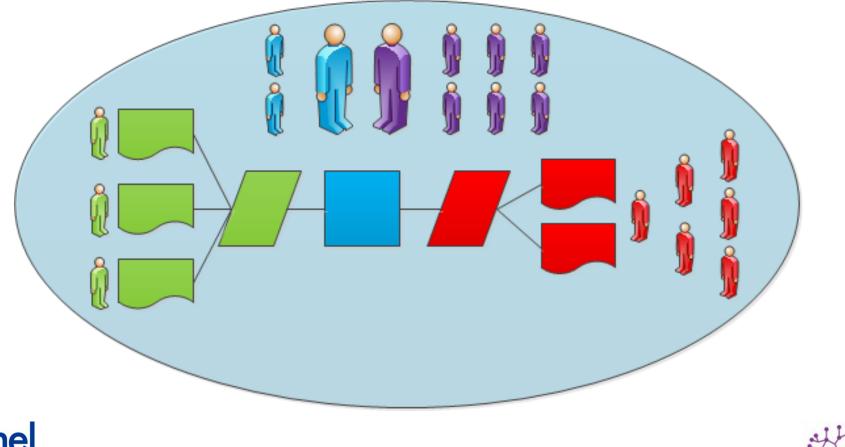
Gan, et al. (2005) *WSC 2005,* Taylor, et al. (2007) *WSC 2007,* Rabe, et al. (2006) *WSC 2006,* Lenderman, et al. (2007) *Journal of Simulation,* Strassburger, et al. (2007) *WSC 2007,* Raab, et al. (2007) *WSC 2007,* Jain, et al. (2009) *WSC 2009,* Son, et al. (2009) *Journal of Simulation* Pedrielli, et al. (2011) *PADS 2011*

e-Infrastructures for M&S

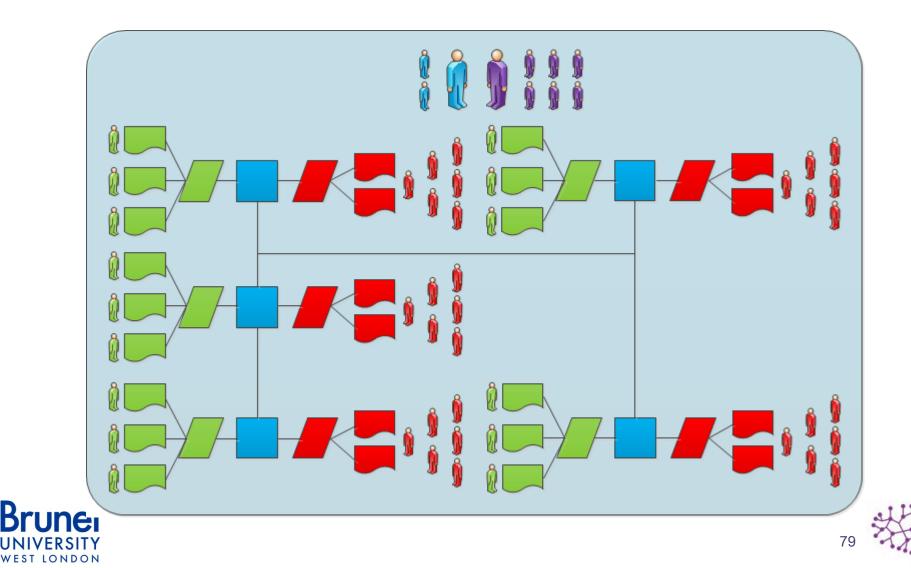
Simulation Interoperability/Distributed Simulation

- Entirely possible but needs
 - Better COTS Simulation Package Integration
 - More standardisation
 - HLA RTI software cost?

e-Infrastructures for M&S


Data (Artefact) Management

- Project cost reduction by better management of all simulation project artefacts
- Integration with other projects
- Cheaper model development through reuse


A "typical" M&S project

78

However, models are getting larger...

In reality, in a large system...

- E.g. Healthcare
 - One or more emergency room models
 - One or more outpatient models (othopaedics, urology, etc.)
 - Ambulance models
 - Social care models
 - Pathway models
 - Health economics models/studies
- Overlap in terms of data, model elements, model scope, results and people

Initial attempt

- DEMO ontology (Fishwick and Miller)
 - Discrete event ontology

DESC

WEST LONDON

- Discrete event simulation component ontology
- Basic search and discovery architecture

Taylor, S.J.E., et al. (2010). Organizational Advancements through Enterprise Information Systems: Emerging Applications and Developments. 336-352. Bell, D., et al. (2008). International Journal of Enterprise Information Systems. 4 (4), 47-61.

e-Infrastructures for M&S

Data (Artefact) Management

- Experience shows that ontology development is very difficult
 - Automatic extraction
- No solution as the problem needs to be properly conceptualised
 - Arguably a methodology is required prior to the technology
 - Namespace conventions
 - Is a centralised organisational "authority" possible given multiple modellers?

- An *e-Infrastructure for M&S* (in the context of this talk) is
 - an environment where resources COTS simulation packages and ancillary software (e.g. Excel), models, data etc.
 — are readily accessible and can be easily shared and/or interoperated
 - It integrates networks, grids, middleware, computational resources, data repositories, and software tools within (virtual) organizational boundaries
- In this domain of simulation
 - Is it worth it? Is it possible? How long?

- Collaborative Support
 - Benefit: High
 - Possible: Easy!
 - Time: Now
- High Speed Experimentation
 - Benefit: **High**
 - Possible: Yes, with some investment
 - Time: Near term


- Simulation Interoperability/Distributed Simulation
 - Benefit: Evidence suggests in some cases high
 - Possible: Yes, with more research/ standardisation
 - Time: Medium term
- Data (Artefact) Management
 - Benefit: **High**
 - Possible: Very challenging
 - Time: Long term

- Real benefit
- Would consist of
 - Groupware
 - Grid/cloud desktop grid(s)
 - Support for simulation interoperability/distributed simulation
 - Artefact management
- Integration?
 - Grid supporting simulation interoperability... not normally found in e-Infrastructures
- Real world problems are key to understanding actual requirements
- End user/Vendor participation is absolutely required

(Main) Acknowledgements

Systems Biology

- Xuan Liu, David Gilbert, Jun Wang, Quan Jao (Brunel), Navonil Mustafee (Swansea)
- Mohammad Ghorbani (Brunel), Tamas Kiss, Daniel Farkas, Stephen Winter (UoW)

SAKERGRID

- Shane Kite, Chris Wood (Saker Solutions)
- NBS Case Study
 - Korina Katiaslaki (UoT), Navonil Mustafee (Swansea), Sally Brailsford (Southampton), Mark Elder (Simul8)

CSPI PDG

WEST LONDON

 Steffen Strassburger (IUT), Stephen Turner (NTU), Navonil Mustafee (Swansea), Malcolm Low (D-SIMLAB), John Ladbrook (Ford), Markus Rabe (IPK), Tomas Schulze (Magdeburg), Wentong Cai (NTU), Frank Riddick (NIST), Katherine Morse (SISO), Rick Servinghaus (SISO), Rockwell, Simul8, Lanner, CSPI PDG and SISO people (esp. 3 TADs!)

THANK YOU!

SZDG/Simul8

 Mohammad Ghorbani (Brunel), Navonil Mustafee (Swansea), Tamas Kiss (UoW), Mark Elder (Simul8), Korina Katiaslaki (UoT), Vince Knight (Cardiff)

DESC

 Paul Fishwick (Florida), David Bell (Brunel), Sergio Decesere (Brunel), Navonil Mustafee (Swansea)

