
David M. Nicol
University of Illinois at Urbana-Champaign

2

Exploiting Uncertainty and Error to
Accelerate Simulations

Modeling is the Art of Abstraction
Science is based on models of phenomena

– If there’s an equation, there’s a model
• Chemical reactions
• Biological systems
• Physics
• Engineering
• Etc.

Every model abstracts away some detail, e.g.
– Physical characteristic
– Time scale

Example from high school

g
g cos θ

g sin θ

N

Block on an inclined plane : no friction

Model :
• Center of mass
• Gravity g (decomposed in coordinates relative to plane)
• “Normal” force orthogonal to plane

θ

Example from high school

g
g cos θ

g sin θ

N

Block on an inclined plane : add friction

Model :
• Center of mass
• Gravity g (decomposed in coordinates relative to plane)
• “Normal” force orthogonal to plane
• Friction modeled as force opposed to movement along plane

f

θ

But what is friction, really?

g
g cos θ

g sin θ

N

At atomic scales friction is due to geometry and electrostatic
forces

One could in principle model this ab initio
• But this is computationally intractable at scale

• point being : abstraction helps to accelerate solution

f

θ

Uncertainty in Parameters
Abstraction parameters may be uncertain

Example from recent work --- validation of radio channel models
in anechoic chamber

http://www.facebook.com/photo.php?pid=2770980&id=602826511

antenna

Beam form

transmitted

reflected

Ray-tracing model needs
• Shape of antenna
• Shape of transmission (beam form)
• Transmission strengths
• Material coefficients for reflection / transmission

Uncertainty in Parameters

Uncertainty in Parameters
Ray-tracing model needs
• Shape of antenna
• Shape of transmission (beam form)
• Transmission strengths
• Material coefficients for reflection / transmission
In most cases we cannot get these right

antenna

Beam form

transmitted

reflected

Emulation, Simulation, and Temporal Error

• Virtualization supports high fidelity application behavior
• Time-stamps on traffic affect congestion, hence latency and packet

loss
• Emulators need to get access to virtual clocks, not physical ones

10

VMM

Network Simulator

V
M
V
M
V
M
V
M
V
M

V
M
V
M
V
M
V
M
V
M

V
M
V
M
V
M
V
M
V
M

System Architecture

11

Linux kernel

OpenVZ layer

VE0 (host)

VE0=Sim/Control controls the
emulation progress

Guest VEs represent emulated
network nodes

Packet traverse route

VE1 (guest)

VE2 (guest)

VE2 (guest)

Each guest VE has its
own virtual clock

Ethernet
tunnel

Network
simulator

veth1 veth2 veth3

Virtual Time

• VEs perceive time as if running concurrently
• Clocks advance: either CPU or I/O

12

CPU I/O CPU

Wall clock time 0 1 2 3 4 5 6

I/O CPU
Real system

CPU

Sim/Control traps & simulates I/O, and advances virtual time

CPU

Virtual time 0 1 3 4 5 6 7

CPU
Emulation

Sources of Temporal Errors
• Measuring execution time

– Caching effects, pipeline effects, etc.

• Variation in timeslice lengths
– 10% variation in 1 ms slice not uncommon

• Impact of background system activity
– e.g., page faults, periodic timers, background

daemons

To use emulation means one has to accept some
uncertainties / errors

Abstraction and Uncertainty
Sometimes abstraction covers uncertainty
• Signal processing : models of signal + noise

– “noise” modeled with some probability
distribution or time-series

Abstraction and Uncertainty
• Sometimes abstraction covers uncertainty
• Arrivals to queuing systems

– We don’t know what complex psychological
factors lead a population to make calls

• But we model inter-arrivals stochastically to reflect
variation, and observed intensities

time x x x x x

Inter-arrival times

server
λ μ

Queuing Model

Lots of uncertainty and error in models
Models are rife with uncertainty and error

How can we take take advantage of this?

Use to accelerate simulation solution
• Abstract away details that don’t help

– Less work, faster answers!

• Other less obvious techniques?
– Exploit for synchronization in parallel simulation

Brief Primer on Parallel Simulation
Most usual approach
• Partition model state by physical domain
• Each submodel advances through single “event-list”
• Some coordination needed because activity in one submodel

may affect the other

“Conservative” means “Look-ahead”
So-called “conservative” approaches to
synchronization involve “look-ahead”

– Prediction of future behavior w.r.t. interactions with
other submodels

– Allows a sub-model to advance asynchronously
through this safe period

– The challenge always is to exploit the model to get the
look-ahead

How can we constructively use model uncertainty
and error to create look-ahead?

First approach – pre-sampling
Randomness captures model uncertainty and variation

– Inter-arrival times, service times, collection sizes
Typically these are computed on demand, using pseudo-random
number generators

– Computing ahead of time sometimes allows look-ahead
• Example, FCFS queuing, state-independent service times

server

λ Next service = 17

• If queue is empty at time s, no departure possible before s plus pre-sampled
next service time

• When arrival does occur, at t,
– Next service sampled
– Departure immediately reported, along with departure time plus new next service

time

Fancier pre-sampling in CTMC
• Inter-arrivals in Poisson process are i.i.d. exp(λ)
• State holding times in continuous time Markov chain are

independent exponentials, not identical
• “uniformization” is basis for fancier pre-sampling when rates are

unknown, but bounded
• The clever trick: sample an exponential with rate λ, using

potentially more samples of exponentials with rate ω > λ

x x x x

sample from exp(ω)

Accept each event with probability λ/ω, stop on success

Technically, exp(λ) is a geometric sum of i.i.d. exp(ω)

Lookahead --- pre-sample the uniformized holding times

Concrete Example
Uniformized rate submodel 1 to submodel 2 : 2µ; actual rate : (#busy servers)µ
Uniformized rate submodel 2 to submodel 1 : ν; actual rate : (#busy servers) ν

21

Dual
Server
@ µ

Single
Server
@ ν

Submodel 1

Submodel 2

Submodel 3

Fancier pre-sampling in CTMC
• Submodels generate pre-sampled times between uniformized

events

x x x x Submodel 1

s3

s2 s2 s2

x x x x Submodel 1

s1 s1

time

time

s3

s1

Fancier pre-sampling in CTMC
• Submodels exchange lists, create synchronization schedule

x x x x Submodel 1

s3

s2 s2 s2

x x x x Submodel 2

s1 s1

time

time

s3

s1

s2 s2

s1

s2

s1

Fancier pre-sampling in CTMC
• When submodel reaches outbound event, flips coin and transitions

with probability λ/ω, sends message reporting transition or
pseudo-event

x x x x Submodel 1

s3

s2 s2

x x x x Submodel 2

s1 s1

time

time

s3

s1

s2 s2

s1

s2

s1

Fancier pre-sampling in CTMC
• When submodel reaches inbound event, waits for receipt of

message before advancing

x x x x Submodel 1

s3

s2 s2

x x x x Submodel 2

s1 s1

time

time

s3

s1

s2 s2

s1

s2

s1

Fancier pre-sampling in CTMC
• When submodel reaches inbound event, waits for receipt of

message before advancing

x x x x Submodel 1

s3

s2 s2

x x x x Submodel 2

s1 s1

time

time

s3

s1

s2 s2

s1

s2

s1

Fancier pre-sampling in CTMC
• When submodel reaches inbound event, waits for receipt of

message before advancing

x x x x Submodel 1

s3

s2 s2

x x x x Submodel 2

s1

time

time

s3

s1

s2 s2

s1

s2

s1

Fancier pre-sampling in CTMC
• When submodel reaches inbound event, waits for receipt of

message before advancing

x x x x Submodel 1

s3

s2 s2

x x x x Submodel 2

s1

time

time

s3

s1

s2 s2

s1

s2

s1

Fancier pre-sampling in CTMC
• When submodel reaches inbound event, waits for receipt of

message before advancing

x x x x Submodel 1

s3

s2 s2

x x x x Submodel 2

time

time

s3

s1

s2 s2

s1

s2

s1

It really works
• FCFS pre-sampling gave nearly perfect

speedups on problems formerly thought to
defeat conservative parallel simulation

• A uniformization simulation once held the

world’s largest speedup record (I think)
– O(500) speedup, massive queuing network

Notable --- these were techniques for changing the
way a given model is evaluated

Changing the model to accelerate
simulation

Argument : It can be OK to change the model since some of
its parameters are wrong anyway

– More formally, little errors don’t matter so much in
the presence of big errors

Example --- modeling delay through a router or switch
• In large scale networks a packet may transit 10+

switches on average a lot of network simulation is
doing switching

Accelerating packet traffic
• Routing / switch involves multiple queues and various

scheduling policies
– In general case expect at least 2 events / packet

• On entry, on exit

processor

What really matters?
A model ought to

– Get the functionality right
– Estimate latency through the switch
– Determine whether a packet is dropped

Observe---applications operate at a time scale over a
hundred times slower than a switch
– Small errors in latency will not be noticed

Observe---applications that use TCP react to every packet
loss

Observe---TCP throughput depends on average RTT

Conclusion --- we should try to be accurate w.r.t. packet

loss, but can accept individual errors in latency in
exchange for speed, preserve average RTT

Model Switching Behavior
How can we understand what is going on

within a device well enough to model it?

When we do understand it we want to

model it with a single event

– On arrival determine
• Exgress port
• Whether packet is dropped
• What latency through device will be
• Schedule packet arrival at next device

Measuring latency---fail
Idea
1. Get some COTS switches
2. Shoot tagged traffic at a switch

• Sequence numbers to detect loss
• Hack NICs to insert time-stamps on send and receive
• Use Univ. Wash. gulp software to monitor

Traffic
generator

Traffic
analysis

S=15
T=10.21

S=16
T=10.23

S=72
T=10.22

S=14
T=10.20

S=12
T=10.18

Problem: overhead/delay on receipt added x10 factor of noise,
unable to run at line rate

Measuring latency---hardware help

NetFPGA card
 programmable to store and transmit 10,000 packets, @1500 bytes
 packets read up from configuration file
 contain sequence numbers and “release times”

Endace DAG card
 capable of capturing and storing millions of frames at line rate
 time-stamped on arrival with 10ns resolution

Observe : Two clocks require synchronization.
Observe : We have only one clock, at receiver.

??

Testbed Architecture

Key points
• NetFPGA can send duplicate packets out different ports

simultaneously
– Direct one flow through switch, entangled flow directly to DAG
– Both are time-stamped, difference is latency!

• Background traffic introduced to create contention

t
t+L

Baseline Performance
Baseline performance == single flow, no overload
• Two switches evaluated, both carry very close to line speed
• Both flows give constant performance

– 3COM’s is somewhat slower

High Load – NetGear Switch

NetGear GS 108, TrendNet TEGS80G
– Instrumented 2 flows, 900 Mbs, and 300 Mbs
– x-axis is packet index, y-axis is delay through switch
– “0” latency codes packet loss---both flows affected uniformly
– Appears queue “drains” to 1/2 length before admitting new

traffic
– FCFS explains behavior

• Implies “1 event passage” already possible

High Load – 3Com Switch
3COM 3CGSU08

– Same two flows
– Only “fast” flow sees loss
– Different flows have different mean latency
– Explainable by “Weighted Round Robin” scheduling

Weighted Round Robin Scheduling
• Schedules created for each “round”

– Queue transmits packets
– Queues served in order of earliest packet arrival
– Queue states at round calculation are not known

– Implies that packet departure time cannot in
general be predicted on arrival

Latency-Approximate WRR
Key ideas

– Compute exactly the queue lengths and
packet departures

– When a packet arrives
• Determine whether lost or not
• Choose a latency for it, accepting that it is

incorrect
• Forward the packet

– Chosen latency for the packet can be recent
observed real latencies, or averages of these

Observe---the latencies used to forward
packets are just lags on real ones

• one might actually correct them down stream

Validation
Real data, WRR simulation, Latency-Approximate WRR simulation

real

WRR sim

LA WRR sim

Performance Study
We can measure performance of simulation overall

– But want to isolate performance of switch simulation

We want to consider full-scale 2 events / packet simulation (general)

– But recognize that under WRR departures of packets are known
at the end of a scheduling period

• Reduces event count, but increases event complexity

IDEA : Study performance of 3 models as the number of switches grows

– Not so much realism in network as making switch sim prominent

Performance Results
Models :

– Q1 --- latency approximate WRR
– Q2 --- detailed WRR simulator, 1 event per packet arrival,

departing packets forwarded at end of scheduling round
– Q3 --- detailed WRR simulator, packet arrival and departure

scheduled separately

Conclusion : not quite a factor of 2 speedup

But what about
{accuracy,validation,science}?

• Various techniques shown look like a bunch of hacks
– Clever, maybe, but where’s the beef?
– That’s a different talk

• Questions we try to answer
– What are quantifiable relationships between predictions of one model

and another that uses these model changes / abstractions?
– How does uncertainty grow with levels of abstraction? Can it be

bounded?
– Are there general principles for uncertainty containment or error

masking?
– These are all very hard problems! But they are the “modeling science”

we need to supports “model engineering”

Done, at last
Take-home points

– Models inherently have abstractions
• So inherently have deviations from reality

– We can take advantage of the abstractions to
accelerate model solution

– Given that models have deviations from reality
anyway, introducing smaller scale deviations
deliberately to accelerate solution may not affect
results

– A mathematics of Uncertainty Quantification for
discrete systems is needed

	Exploiting Uncertainty and Error to Accelerate Simulations
	Modeling is the Art of Abstraction
	Example from high school
	Example from high school
	But what is friction, really?
	Uncertainty in Parameters
	Uncertainty in Parameters
	Uncertainty in Parameters
	Emulation, Simulation, and Temporal Error
	System Architecture
	Virtual Time
	Sources of Temporal Errors
	Abstraction and Uncertainty
	Abstraction and Uncertainty
	Lots of uncertainty and error in models
	Brief Primer on Parallel Simulation
	“Conservative” means “Look-ahead”
	First approach – pre-sampling
	Fancier pre-sampling in CTMC
	Concrete Example
	Fancier pre-sampling in CTMC
	Fancier pre-sampling in CTMC
	Fancier pre-sampling in CTMC
	Fancier pre-sampling in CTMC
	Fancier pre-sampling in CTMC
	Fancier pre-sampling in CTMC
	Fancier pre-sampling in CTMC
	Fancier pre-sampling in CTMC
	It really works
	Changing the model to accelerate simulation
	Accelerating packet traffic
	What really matters?
	Model Switching Behavior
	Measuring latency---fail
	Measuring latency---hardware help
	Testbed Architecture
	Baseline Performance
	High Load – NetGear Switch
	High Load – 3Com Switch
	Weighted Round Robin Scheduling
	Latency-Approximate WRR
	Validation
	Performance Study
	Performance Results
	But what about {accuracy,validation,science}?
	Done, at last

