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Exploiting Uncertainty and Error to 
Accelerate Simulations 



Modeling is the Art of Abstraction 
Science is based on models of phenomena 

– If there’s an equation, there’s a model 
• Chemical reactions 
• Biological systems 
• Physics 
• Engineering 
• Etc. 

Every model abstracts away some detail, e.g. 
– Physical characteristic 
– Time scale 



Example from high school 
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Block on an inclined plane : no friction 
 
Model :  
• Center of mass 
• Gravity g (decomposed in coordinates relative to plane) 
• “Normal” force orthogonal to plane 
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Example from high school 

g 
g cos θ 

g sin θ 

N 

Block on an inclined plane : add friction 
 
Model :  
• Center of mass 
• Gravity g (decomposed in coordinates relative to plane) 
• “Normal” force orthogonal to plane 
• Friction modeled as force opposed to movement along plane 
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But what is friction, really? 

g 
g cos θ 

g sin θ 

N 

At atomic scales friction is due to geometry and electrostatic 
forces 
 
One could in principle model this ab initio 
• But this is computationally intractable at scale 

• point being : abstraction helps to accelerate solution 
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Uncertainty in Parameters 
Abstraction parameters may be uncertain 
 
Example from recent work --- validation of radio channel models 
in anechoic chamber 

 

http://www.facebook.com/photo.php?pid=2770980&id=602826511
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Ray-tracing model needs 
• Shape of antenna 
• Shape of transmission (beam form) 
• Transmission strengths 
• Material coefficients for reflection / transmission 

 

Uncertainty in Parameters 



Uncertainty in Parameters 
Ray-tracing model needs 
• Shape of antenna 
• Shape of transmission (beam form) 
• Transmission strengths 
• Material coefficients for reflection / transmission 
In most cases we cannot get these right 
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Emulation, Simulation, and Temporal Error 

• Virtualization supports high fidelity application behavior 
• Time-stamps on traffic affect congestion, hence latency and packet 

loss 
• Emulators need to get access to virtual clocks, not physical ones 
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System Architecture 
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Linux kernel 

OpenVZ layer 

VE0 (host) 
 
 
 
 
 

VE0=Sim/Control controls the 
emulation progress 

Guest VEs represent emulated 
network nodes 

Packet traverse route 

VE1 (guest) 
 
 
 
 
        

VE2 (guest) 
 
 
 
 
        

VE2 (guest) 
 
 
 
 
        

Each guest VE has its 
own virtual clock 

Ethernet 
tunnel 

Network 
simulator 

veth1 veth2 veth3 



Virtual Time 

• VEs perceive time as if running concurrently 
• Clocks advance: either CPU or I/O 
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CPU I/O CPU 

Wall clock time 0            1            2            3            4            5            6             

I/O CPU 
Real system 

CPU 

Sim/Control traps & simulates I/O, and advances virtual time 

CPU 

Virtual time 0            1      3            4     5            6            7 

CPU 
Emulation 



Sources of Temporal Errors 
• Measuring execution time 

– Caching effects, pipeline effects, etc. 

• Variation in timeslice lengths 
– 10% variation in 1 ms slice not uncommon 

• Impact of background system activity 
– e.g., page faults, periodic timers, background 

daemons 
 

To use emulation means one has to accept some 
uncertainties / errors 



Abstraction and Uncertainty 
Sometimes abstraction covers uncertainty 
• Signal processing :  models of signal + noise 

– “noise” modeled with some probability 
distribution or time-series 

 

 



Abstraction and Uncertainty 
• Sometimes abstraction covers uncertainty 
• Arrivals to queuing systems 

– We don’t know what complex psychological 
factors lead a population to make calls 

• But we model inter-arrivals stochastically to reflect 
variation, and observed intensities 

 

 
time x x x x x 

Inter-arrival times 

server 
λ μ 

Queuing Model 



Lots of uncertainty and error in models 
Models are rife with uncertainty and error 
 
How can we take take advantage of this? 
 
Use to accelerate simulation solution 
• Abstract away details that don’t help 

– Less work, faster answers! 

• Other less obvious techniques? 
– Exploit for synchronization in parallel simulation 



Brief Primer on Parallel Simulation 
Most usual approach 
• Partition model state by physical domain 
• Each submodel advances through single “event-list” 
• Some coordination needed because activity in one submodel 

may affect the other 



“Conservative” means “Look-ahead” 
So-called “conservative” approaches to 
synchronization involve “look-ahead” 

– Prediction of future behavior w.r.t. interactions with 
other submodels 

–  Allows a sub-model to advance asynchronously 
through this safe period 

– The challenge always is to exploit the model to get the 
look-ahead 

How can we constructively use model uncertainty 
and error to create look-ahead? 



First approach – pre-sampling 
Randomness captures model uncertainty and variation 

– Inter-arrival times, service times, collection sizes 
Typically these are computed on demand, using pseudo-random 
number generators 

– Computing ahead of time sometimes allows look-ahead 
• Example, FCFS queuing, state-independent service times 

 
server 

λ Next service = 17 

• If queue is empty at time s, no departure possible before s plus pre-sampled 
next service time 

• When arrival does occur, at t,  
– Next service sampled 
– Departure immediately reported, along with departure time plus new next service 

time 



Fancier pre-sampling in CTMC 
• Inter-arrivals in Poisson process are i.i.d. exp(λ) 
• State holding times in continuous time Markov chain are 

independent exponentials, not identical 
• “uniformization” is basis for fancier pre-sampling when rates are 

unknown, but bounded 
• The clever trick: sample an exponential with rate λ, using 

potentially more samples of exponentials with rate ω > λ 

x x x x 

sample from exp(ω) 

Accept each event with probability λ/ω, stop on success 

Technically, exp(λ) is a geometric sum of i.i.d. exp(ω)  
 
Lookahead --- pre-sample the uniformized holding times 



Concrete Example 
Uniformized rate submodel 1 to submodel 2 : 2µ; actual rate : (#busy servers)µ 
Uniformized rate submodel 2 to submodel 1 : ν; actual rate : (#busy servers) ν 
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Dual 
Server 
@ µ 

Single 
Server 
@ ν 

Submodel 1 

Submodel 2 

Submodel 3 



Fancier pre-sampling in CTMC 
• Submodels generate pre-sampled times between uniformized 

events 
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Fancier pre-sampling in CTMC 
• Submodels exchange lists, create synchronization schedule 
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Fancier pre-sampling in CTMC 
• When submodel reaches outbound event, flips coin and transitions 

with probability λ/ω, sends message reporting transition or 
pseudo-event 
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Fancier pre-sampling in CTMC 
• When submodel reaches inbound event, waits for receipt of 

message before advancing 
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Fancier pre-sampling in CTMC 
• When submodel reaches inbound event, waits for receipt of 

message before advancing 
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Fancier pre-sampling in CTMC 
• When submodel reaches inbound event, waits for receipt of 

message before advancing 
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Fancier pre-sampling in CTMC 
• When submodel reaches inbound event, waits for receipt of 

message before advancing 
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Fancier pre-sampling in CTMC 
• When submodel reaches inbound event, waits for receipt of 

message before advancing 
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It really works 
• FCFS pre-sampling gave nearly perfect 

speedups on problems formerly thought to 
defeat conservative parallel simulation 

 
• A uniformization simulation once held the 

world’s largest speedup record (I think) 
– O(500) speedup, massive queuing network 

 
Notable --- these were techniques for changing the 
way a given model is evaluated 

 
 



Changing the model to accelerate 
simulation 

Argument : It can be OK to change the model since some of 
its parameters are wrong anyway 

– More formally,  little errors don’t matter so much in 
the presence of big errors 
 

Example --- modeling delay through a router or switch 
• In large scale networks a packet may transit 10+ 

switches on average  a lot of network simulation is 
doing switching 



Accelerating packet traffic 
• Routing / switch involves multiple queues and various 

scheduling policies  
– In general case expect at least 2 events / packet 

• On entry, on exit 

processor 



What really matters? 
A model ought to 

– Get the functionality right 
– Estimate latency through the switch 
– Determine whether a packet is dropped 
 

Observe---applications operate at a time scale over a 
hundred times slower than a switch 
–  Small errors in latency will not be noticed 

Observe---applications that use TCP react to every packet 
loss 

Observe---TCP throughput depends on average RTT 
 
Conclusion --- we should try to be accurate w.r.t. packet 

loss, but can accept individual errors in latency in 
exchange for speed, preserve average RTT 

 



Model Switching Behavior 
How can we understand what is going on 

within a device well enough to model it? 
 
When we do understand it we want to 

model it with a single event 
 

– On arrival determine 
• Exgress port 
• Whether packet is dropped 
• What latency through device will be 
• Schedule packet arrival at next device 

 
 



Measuring latency---fail 
Idea 
1. Get some COTS switches 
2. Shoot tagged traffic at a switch 

• Sequence numbers to detect loss 
• Hack NICs to insert time-stamps on send and receive 
• Use Univ. Wash. gulp software to monitor  

 
 

Traffic 
generator 

Traffic 
analysis 

S=15 
T=10.21 

S=16 
T=10.23 

S=72 
T=10.22 

S=14 
T=10.20 

S=12 
T=10.18 

Problem: overhead/delay on receipt added x10 factor of noise, 
unable to run at line rate 

 



Measuring latency---hardware help 
 
 

 

NetFPGA card 
 programmable to store and transmit 10,000 packets, @1500 bytes 
 packets read up from configuration file 
  contain sequence numbers and “release times” 
 
Endace DAG card 
 capable of capturing and storing millions of frames at line rate 
 time-stamped on arrival with 10ns resolution 
  
 
Observe : Two clocks require synchronization.   
Observe : We have only one clock, at receiver. 
 
?? 

 



Testbed Architecture 
 
 

 

Key points 
• NetFPGA can send duplicate packets out different ports 

simultaneously 
– Direct one flow through switch, entangled flow directly to DAG 
– Both are time-stamped, difference is latency! 

• Background traffic introduced to create contention 
 
  

t 
t+L 



Baseline Performance 
Baseline performance == single flow, no overload 
• Two switches evaluated, both carry very close to line speed 
• Both flows give constant performance 

– 3COM’s is somewhat slower  
 
  



High Load – NetGear Switch 

NetGear GS 108, TrendNet TEGS80G 
– Instrumented 2 flows, 900 Mbs, and 300 Mbs 
– x-axis is packet index, y-axis is delay through switch 
– “0” latency codes packet loss---both flows affected uniformly 
– Appears queue “drains” to 1/2 length before admitting new 

traffic 
– FCFS explains behavior 

• Implies “1 event passage” already possible 
 
 

 



High Load – 3Com Switch 
3COM 3CGSU08 

– Same two flows 
– Only “fast” flow sees loss 
– Different flows have different mean latency 
– Explainable by “Weighted Round Robin” scheduling 

 
 

 



Weighted Round Robin Scheduling 
• Schedules created for each “round” 

– Queue       transmits                packets 
– Queues served in order of earliest packet arrival 
– Queue states at round calculation are not known 

– Implies that packet departure time cannot in 
general be predicted on arrival 



Latency-Approximate WRR 
Key ideas 

– Compute exactly the queue lengths and 
packet departures 

– When a packet arrives 
• Determine whether lost or not 
• Choose a latency for it, accepting that it is 

incorrect 
• Forward the packet 

– Chosen latency for the packet can be recent 
observed real latencies, or averages of these 

Observe---the latencies used to forward 
packets are just lags on real ones 

• one might actually correct them down stream 



Validation 
Real data, WRR simulation, Latency-Approximate WRR simulation 

real 

WRR sim 

LA WRR sim 



Performance Study 
We can measure performance of simulation overall 

– But want to isolate performance of switch simulation 
 
We want to consider full-scale 2 events / packet simulation (general) 

– But recognize that under WRR departures of packets are known 
at the end of a scheduling period 

• Reduces event count, but increases event complexity 
 
IDEA : Study performance of 3 models as the number of switches grows 

– Not so much realism in network as making switch sim prominent  



Performance Results 
Models : 

– Q1 --- latency approximate WRR 
– Q2 --- detailed WRR simulator, 1 event per packet arrival, 

departing packets forwarded at end of scheduling round  
– Q3 --- detailed WRR simulator, packet arrival and departure 

scheduled separately 
 

Conclusion : not quite a factor of 2 speedup 



But what about 
{accuracy,validation,science}? 

• Various techniques shown look like a bunch of hacks 
– Clever, maybe, but where’s the beef? 
– That’s a different talk 

• Questions we try to answer 
– What are quantifiable relationships between predictions of one model 

and another that uses these model changes / abstractions? 
– How does uncertainty grow with levels of abstraction? Can it be 

bounded? 
– Are there general principles for uncertainty containment or error 

masking? 
– These are all very hard problems!  But they are the “modeling science” 

we need to supports “model engineering” 
 
 
 



Done, at last 
Take-home points 

– Models inherently have abstractions 
• So inherently have deviations from reality 

– We can take advantage of the abstractions to 
accelerate model solution 

– Given that models have deviations from reality 
anyway, introducing smaller scale deviations 
deliberately to accelerate solution may not affect 
results 

– A mathematics of Uncertainty Quantification for 
discrete systems is needed 
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